A solar-driven aerosolized particle reactor under vacuum was tested for carbothermal reduction of zinc oxide using concentrated solar power. The reactor concept is based on the downward flow of zinc oxide and carbon particles, which are indirectly heated by an opaque intermediate solar absorption tube. The particles are rapidly heated to reaction temperature and reduced within residence times of less than 1 s. In the continuous feeding experiments, maximum sustained temperatures close to 2000 K and heating rates as fast as 1400 K min−1 could be achieved for pressures between 1 and 1000 mbar. Reactant conversions of up to 44% were obtained at 1000 mbar. It was found that a reduction in system pressure leads to a decreased particle residence time (as low as 0.09 s), and therefore low conversion (as low as 1%), thus partially diminishing the positive thermodynamic effects of vacuum operation. Experimental results validate the robust and versatile reactor concept, and simultaneously highlight the necessity of balancing the system design in order to optimize the conflicting influence of vacuum operation and reacting particle residence time.

References

References
1.
Loutzenhiser
,
P. G.
, and
Steinfeld
,
A.
,
2011
, “
Solar Syngas Production From CO2 and H2O in a Two-Step Thermochemical Cycle Via Zn/ZnO Redox Reactions: Thermodynamic Cycle Analysis
,”
Int. J. Hydrogen Energy
,
36
(
19
), pp.
12141
12147
.
2.
Steinfeld
,
A
.,
2005
, “
Solar Thermochemical Production of Hydrogen—A Review
,”
Sol. Energy
,
78
(
5
), pp.
603
615
.
3.
Osinga
,
T.
,
Frommherz
,
U.
,
Steinfeld
,
A.
, and
Wieckert
,
C.
,
2004
, “
Experimental Investigation of the Solar Carbothermic Reduction of ZnO Using a Two-Cavity Solar Reactor
,”
ASME J. Sol. Energy Eng.
,
126
(
1
), pp.
633
637
.
4.
Wieckert
,
C.
,
Frommherz
,
U.
,
Kräupl
,
S.
,
Guillot
,
E.
,
Olalde
,
G.
,
Epstein
,
M.
,
Santén
,
S.
,
Osinga
,
T.
, and
Steinfeld
,
A.
,
2006
, “
A 300 kW Solar Chemical Pilot Plant for the Carbothermic Production of Zinc
,”
ASME J. Sol. Energy Eng.
,
129
(
2
), pp.
190
196
.
5.
Stamatiou
,
A.
,
Loutzenhiser
,
P. G.
, and
Steinfeld
,
A.
,
2012
, “
Syngas Production From H2O and CO2 Over Zn Particles in a Packed-Bed Reactor
,”
AIChE J.
,
58
(
2
), pp.
625
631
.
6.
Schulz
,
H.
,
1999
, “
Short History and Present Trends of Fischer–Tropsch Synthesis
,”
Appl. Catal., A
,
186
(
1–2
), pp.
3
12
.
7.
Werder
,
M.
,
2000
, “
Life Cycle Assessment of the Conventional and Solar Thermal Production of Zinc and Synthesis Gas
,”
Energy
,
25
(
5
), pp.
395
409
.
8.
Berman
,
A.
, and
Epstein
,
M.
,
1999
, “
The Kinetic Model for Carboreduction of Zinc Oxide
,”
J. Phys. IV
,
9
, pp.
319
324
.
9.
Müller
,
R.
, and
Steinfeld
,
A.
,
2008
, “
H2O-Splitting Thermochemical Cycle Based on ZnO/Zn-Redox: Quenching the Effluents From the ZnO Dissociation
,”
Chem. Eng. Sci.
,
63
(
1
), pp.
217
227
.
10.
Mueller
,
R.
,
Haeberling
,
P.
, and
Palumbo
,
R. D.
,
2006
, “
Further Advances Toward the Development of a Direct Heating Solar Thermal Chemical Reactor for the Thermal Dissociation of ZnO(s)
,”
Sol. Energy
,
80
(
5
), pp.
500
511
.
11.
Steinfeld
,
A
.,
2002
, “
Solar Hydrogen Production Via a Two-Step Water-Splitting Thermochemical Cycle Based on Zn/ZnO Redox Reactions
,”
Int. J. Hydrogen Energy
,
27
(
6
), pp.
611
619
.
12.
Brooks
,
G.
,
Trang
,
S.
,
Witt
,
P.
,
Khan
,
M. N. H.
, and
Nagle
,
M.
,
2006
, “
The Carbothermic Route to Magnesium
,”
JOM
,
58
(
5
), pp.
51
55
.
13.
Balomenos
,
E.
,
Panias
,
D.
, and
Paspaliaris
,
I.
,
2011
, “
Energy and Exergy Analysis of the Primary Aluminum Production Processes: A Review on Current and Future Sustainability
,”
Miner. Process. Extr. Metall. Rev.
,
32
(
2
), pp.
69
89
.
14.
Chambon
,
M.
,
Abanades
,
S.
, and
Flamant
,
G.
,
2010
, “
Design of a Lab-Scale Rotary Cavity-Type Solar Reactor for Continuous Thermal Dissociation of Volatile Oxides Under Reduced Pressure
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p.
21006
.
15.
Halmann
,
M.
,
Frei
,
A.
, and
Steinfeld
,
A.
,
2011
, “
Vacuum Carbothermic Reduction of Al2O3, BeO, MgO-CaO, TiO2, ZrO2, HfO2 + ZrO2, SiO2, SiO2 + Fe2O3, and GeO2 to the Metals. A Thermodynamic Study
,”
Miner. Process. Extr. Metall. Rev.
,
32
(
4
), pp.
247
266
.
16.
Vishnevetsky
,
I.
,
Ben-Zvi
,
R.
,
Epstein
,
M.
,
Barak
,
S.
, and
Rubin
,
R.
,
2013
, “
Solar Carboreduction of Alumina Under Vacuum
,”
JOM
,
65
(
12
), pp.
1721
1732
.
17.
Vishnevetsky
,
I.
, and
Epstein
,
M.
,
2015
, “
Solar Carbothermic Reduction of Alumina, Magnesia and Boria Under Vacuum
,”
Sol. Energy
,
111
, pp.
236
251
.
18.
Steinfeld
,
A.
, and
Spiewak
,
I.
,
1998
, “
Economic Evaluation of the Solar Thermalco-Production of Zinc and Synthesis Gas
,”
Energy Convers. Manage.
,
39
(
15
), pp.
1513
1518
.
19.
Kräupl
,
S.
, and
Wieckert
,
C.
,
2007
, “
Economic Evaluation of the Solar Carbothermic Reduction of ZnO by Using a Single Sensitivity Analysis and a Monte Carlo Risk Analysis
,”
Energy
,
32
(
7
), pp.
1134
1147
.
20.
Chambon
,
M.
,
Abanades
,
S.
, and
Flamant
,
G.
,
2011
, “
Thermal Dissociation of Compressed ZnO and SnO2 Powders in a Moving-Front Solar Thermochemical Reactor
,”
AIChE J.
,
57
(
8
), pp.
2264
2273
.
21.
Koepf
,
E.
,
Advani
,
S. G.
,
Steinfeld
,
A.
, and
Prasad
,
A. K.
,
2012
, “
A Novel Beam-Down, Gravity-Fed, Solar Thermochemical Receiver/Reactor for Direct Solid Particle Decomposition: Design, Modeling, and Experimentation
,”
Int. J. Hydrogen Energy
,
37
(
22
), pp.
16871
16887
.
22.
Koepf
,
E. E.
,
Advani
,
S. G.
,
Prasad
,
A. K.
, and
Steinfeld
,
A.
,
2015
, “
Experimental Investigation of the Carbothermal Reduction of ZnO Using a Beam-Down, Gravity-Fed Solar Reactor
,”
Ind. Eng. Chem. Res.
,
54
(
33
), pp.
8319
8332
.
23.
Ermanoski
,
I.
,
Siegel
,
N. P.
, and
Stechel
,
E. B.
,
2013
, “
A New Reactor Concept for Efficient Solar-Thermochemical Fuel Production
,”
ASME J. Sol. Energy Eng.
,
135
(
3
),
p
. 031002.
24.
Schunk
,
L. O.
,
Haeberling
,
P.
,
Wepf
,
S.
,
Wuillemin
,
D.
,
Meier
,
A.
, and
Steinfeld
,
A.
,
2008
, “
A Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide
,”
ASME J. Sol. Energy Eng.
,
130
(
2
), p.
021009
.
25.
Villasmil
,
W.
,
Brkic
,
M.
,
Wuillemin
,
D.
,
Meier
,
A.
, and
Steinfeld
,
A.
,
2013
, “
Pilot Scale Demonstration of a 100-kWth Solar Thermochemical Plant for the Thermal Dissociation of ZnO
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
011016
.
26.
Koepf
,
E.
,
Villasmil
,
W.
, and
Meier
,
A.
,
2015
, “
Pilot-Scale Solar Reactor Operation and Characterization for Fuel Production Via the Zn/ZnO Thermochemical Cycle
,”
J. Appl. Energy
,
165
, pp.
1004
1023
.
27.
Schunk
,
L. O.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2009
, “
Heat Transfer Model of a Solar Receiver-Reactor for the Thermal Dissociation of ZnO—Experimental Validation at 10 kW and Scale-Up to 1 MW
,”
Chem. Eng. J.
,
150
(
2–3
), pp.
502
508
.
28.
Ben-Zvi
,
R
.,
2013
, “
Numerical Simulation and Experimental Validation of a Solar Metal Oxide Reduction System Under Vacuum
,”
Sol. Energy
,
98
(Pt. C), pp.
181
189
.
29.
Vishnevetsky
,
I.
,
Epstein
,
M.
, and
Rubin
,
R.
,
2014
, “
Solar Carboreduction of Alumina Under Vacuum
,”
Energy Procedia
,
49
, pp.
2059
2069
.
30.
Dahl
,
J. K.
,
Buechler
,
K. J.
,
Finley
,
R.
,
Stanislaus
,
T.
,
Weimer
,
A. W.
,
Lewandowski
,
A.
,
Bingham
,
C.
,
Smeets
,
A.
, and
Schneider
,
A.
,
2004
, “
Rapid Solar-Thermal Dissociation of Natural Gas in an Aerosol Flow Reactor
,”
Energy
,
29
(
5–6
), pp.
715
725
.
31.
Wyss
,
J.
,
Martinek
,
J.
,
Kerins
,
M.
,
Dahl
,
J. K.
,
Weimer
,
A.
,
Lewandowski
,
A.
, and
Bingham
,
C.
,
2007
, “
Rapid Solar-Thermal Decarbonization of Methane in a Fluid-Wall Aerosol Flow Reactor—Fundamentals and Application
,”
Int. J. Chem. React. Eng.
,
5
, pp.
1
25
.
32.
Takacs
,
M
.,
2013
, “
Development and Testing of a Scalable Solar Reactor for Vacuum Carbothermal Production of Aluminum
,” Master's thesis, ETH Zurich, Zurich, Switzerland.
33.
Steinfeld
,
A.
, and
Jovanovic
,
Z. R.
,
2014
, “
Methods and Systems for Reducing Metal Oxides
,” Patent Application No. WO2014067664 A2.
34.
Weimer
,
A. W.
,
Roach
,
R. P.
,
Haney
,
C. N.
,
Moore
,
W. G.
, and
Rafaniello
,
W.
,
1991
, “
Rapid Carbothermal Reduction of Boron Oxide in a Graphite Transport Reactor
,”
AIChE J.
,
37
(
5
), pp.
759
768
.
35.
Weimer
,
A. W.
,
Nilsen
,
K. J.
,
Cochran
,
G. A.
, and
Roach
,
R. P.
,
1993
, “
Kinetics of Carbothermal Reduction Synthesis of Beta Silicon Carbide
,”
AIChE J.
,
39
(
3
), pp.
493
503
.
36.
Johnson
,
J. A.
,
Hrenya
,
C. M.
, and
Weimer
,
A. W.
,
2002
, “
Intrinsic Reaction and Self-Diffusion Kinetics for Silicon Carbide Synthesis by Rapid Carbothermal Reduction
,”
J. Am. Ceram. Soc.
,
85
(
9
), pp.
2273
2280
.
37.
Haussener
,
S.
,
Hirsch
,
D.
,
Perkins
,
C.
,
Weimer
,
A.
,
Lewandowski
,
A.
, and
Steinfeld
,
A.
,
2009
, “
Modeling of a Multitube High-Temperature Solar Thermochemical Reactor for Hydrogen Production
,”
ASME J. Sol. Energy Eng.
,
131
(
2
), p.
024503
.
38.
Martinek
,
J.
,
Bingham
,
C.
, and
Weimer
,
A. W.
,
2012
, “
Computational Modeling and On-Sun Model Validation for a Multiple Tube Solar Reactor With Specularly Reflective Cavity Walls. Part 1: Heat Transfer Model
,”
Chem. Eng. Sci.
,
81
, pp.
298
310
.
39.
Perkins
,
C.
,
Lichty
,
P. R.
, and
Weimer
,
A. W.
,
2008
, “
Thermal ZnO Dissociation in a Rapid Aerosol Reactor as Part of a Solar Hydrogen Production Cycle
,”
Int. J. Hydrogen Energy
,
33
(
2
), pp.
499
510
.
40.
Perkins
,
C.
,
Lichty
,
P.
, and
Weimer
,
A. W.
,
2007
, “
Determination of Aerosol Kinetics of Thermal ZnO Dissociation by Thermogravimetry
,”
Chem. Eng. Sci.
,
62
(
21
), pp.
5952
5962
.
41.
Scheffe
,
J. R.
,
Welte
,
M.
, and
Steinfeld
,
A.
,
2014
, “
Thermal Reduction of Ceria Within an Aerosol Reactor for H2O and CO2 Splitting
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2175
2182
.
42.
Petrasch
,
J.
,
Coray
,
P.
,
Meier
,
A.
,
Brack
,
M.
,
Haberling
,
P.
,
Wuillemin
,
D.
, and
Steinfeld
,
A.
,
2007
, “
A Novel 50 kW 11,000 suns High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps
,”
ASME J. Sol. Energy Eng.
,
129
(
4
), pp.
405
411
.
43.
Wieckert
,
C.
, and
Steinfeld
,
A.
,
2001
, “
Solar Thermal Reduction of ZnO Using CH4:ZnO and C:ZnO Molar Ratios Less Than 1
,”
ASME J. Sol. Energy Eng.
,
124
(
1
), pp.
55
62
.
44.
Z'Graggen
,
A.
, and
Steinfeld
,
A.
,
2009
, “
Heat and Mass Transfer Analysis of a Suspension of Reacting Particles Subjected to Concentrated Solar Radiation—Application to the Steam-Gasification of Carbonaceous Materials
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
385
395
.
45.
Loth
,
E.
,
2008
, “
Compressibility and Rarefaction Effects on Drag of a Spherical Particle
,”
AIAA J.
,
46
(
9
), pp.
2219
2228
.
46.
Ross
,
S. M.
,
2009
,
Introduction to Probability and Statistics for Engineers and Scientists
,
Elsevier
,
Oxford, UK
.
47.
Kruesi
,
M.
,
Jovanovic
,
Z. R.
, and
Steinfeld
,
A.
,
2014
, “
A Two-Zone Solar-Driven Gasifier Concept: Reactor Design and Experimental Evaluation With Bagasse Particles
,”
Fuel
,
117
, pp.
680
687
.
48.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
.
49.
Inayat
,
A.
,
Freund
,
H.
,
Zeiser
,
T.
, and
Schwieger
,
W.
,
2011
, “
Determining the Specific Surface Area of Ceramic Foams: The Tetrakaidecahedra Model Revisited
,”
Chem. Eng. Sci.
,
66
(
6
), pp.
1179
1188
.
50.
Winter
,
C.-J.
, and
Sizmann
,
R. L.
,
1991
, “
Thermal Receivers
,”
Solar Power Plants
,
L. L.
Vant-Hull
, ed.,
Springer
,
Heidelberg
, pp.
167
168
.
51.
Buckle
,
E. R.
, and
Pointon
,
K. C.
,
1977
, “
Condensation of Zinc Aerosols
,”
J. Mater. Sci.
,
12
(
1
), pp.
75
89
.
52.
Eversole
,
J. D.
, and
Broida
,
H. P.
,
1974
, “
Electron Microscopy of Size Distribution and Growth of Small Zinc Crystals Formed by Homogeneous Nucleation in a Flowing Inert-Gas System
,”
J. Appl. Phys.
,
45
(
2
), pp.
596
602
.
You do not currently have access to this content.