The present study analyzes the influence that market conditions have on determining optimum molten salt solar tower plants with storage that maximizes profits (in terms of plant configuration, sizing, and operation) for a location in South Africa. Three different scenarios based on incentive programs and local wholesale electricity prices are considered. A multi-objective optimization modeling approach was followed, showing the tradeoff curves between minimizing investment and maximizing profits when varying critical size-related parameters (such as nameplate capacity, solar multiple (SM), and storage capacity) together with power-cycle design and operating specifications including dynamic startup curves and different storage dispatchability strategies. Results are shown by means of a comparative analysis between optimal plants found for each scenario, highlighting the value that storage has under the current two-tier tariff scheme and the relevance of designing a suitable policy for technology development. Finally, a final analysis is performed with regard to the indicators used for economic evaluation of power plants, by comparing the differences between optimum designs found when using the levelized cost of electricity (LCoE) solely as performance indicator instead of cash-flows and profit-based indicators, such as the internal rate of return (IRR).

References

References
1.
International Energy Agency
,
2014
, “
Technology Roadmap: Solar Thermal Electricity
,”
OECD/IEA Press
,
Paris
.
2.
International Energy Agency
,
2014
, “
Energy Technology Perspectives
,”
OECD/IEA Press
,
Paris
.
3.
CSP Alliance
,
2014
, “
The Economic and Reliability Benefits of CSP With Thermal Energy Storage: Literature Review and Research Needs
,”
Concentrating Solar Power Alliance
, Oakland, CA.
4.
International Renewable Energy Agency
,
2012
, “
Concentrating Solar Power, Renewable Energy Technologies: Cost Analysis Series
,” Power Sector, Vol. I, IRENA Secretariat, Abu Dhabi, UAE.
5.
Arce
,
P.
,
Medrano
,
M.
,
Gil
,
A.
,
Oró
,
E.
, and
Cabeza
,
L.
,
2011
, “
Overview of Thermal Energy Storage Potential Energy Savings and Climate Change Mitigation in Spain and Europe
,”
Appl. Energy
,
88
(
8
), pp.
2764
2774
.
6.
Brand
,
B.
,
Boudghene Stambouli
,
A.
, and
Zejli
,
D.
,
2012
, “
The Value of Dispatchability of CSP Plants in the Electricity Systems of Morocco and Algeria
,”
Energy Policy
,
47
, pp.
321
331
.
7.
Denholm
,
P.
, and
Hand
,
M.
,
2011
, “
Grid Flexibility and Storage Required to Achieve Very High Penetration of Variable Renewable Electricity
,”
Energy Policy
,
39
(
3
), pp.
1817
1830
.
8.
Guédez
,
R.
,
Topel
,
M.
,
Spelling
,
J.
, and
Laumert
,
B.
,
2014
, “
Enhancing the Profitability of Solar Tower Power Plants Through Thermoeconomic Analysis Based on Multi-Objective Optimization
,”
Energy Procedia
,
69
, pp.
1277
1286
,
Beijing
,
China
, Sept. 16-19.
9.
Guédez
,
R.
,
Spelling
,
J.
, and
Laumert
,
B.
,
2014
, “
Reducing the Number of Turbine Starts in Concentrating Solar Power Plants Through the Integration of Thermal Energy Storage
,”
ASME J. Sol. Energy Eng.
,
137
(
1
), p.
011003
.
10.
Spelling
,
J.
,
Guédez
,
R.
, and
Laumert
,
B.
,
2014
, “
A Thermo-Economic Study of Storage Integration in Hybrid Solar Gas-Turbine Power Plants
,”
ASME J. Sol. Energy Eng.
,
137
(
1
), p.
011008
.
11.
Burgaleta
,
J.
,
Arias
,
S.
, and
Ramírez
,
D.
,
2012
, “
GEMASOLAR, the First Tower Thermosolar Commercial Plant With Molten Salt Storage
,”
18th International SolarPACES Conference
, Marrakech, Morocco, Sept. 11–14.
12.
Madaeni
,
S.
,
Sioshansi
,
R.
, and
Denholm
,
P.
,
2012
, “
How Thermal Energy Storage Enhances the Economic Viability of Concentrating Solar Power
,”
Proc. IEEE
,
100
(
2
), pp.
335
347
.
13.
Sioshansi
,
R.
, and
Denholm
,
P.
,
2012
, “
The Value of Concentrating Solar Power and Thermal Energy Storage
,”
IEEE Trans. Sustainable Energy
,
1
(
3
), pp.
173
183
.
14.
Kost
,
C.
,
Flath
,
C.
, and
Möst
,
D.
,
2013
, “
Concentrating Solar Power Plant Investment and Operation Decisions Under Different Price and Support Mechanisms
,”
Energy Policy
,
61
, pp.
238
248
.
15.
Silinga
,
C.
,
Gauché
,
P.
,
Rudman
,
J.
, and
Cebecauer
,
T.
,
2014
, “
The South African REIPPP Two-Tier CSP Tariff: Implications for a Proposed Hybrid CSP Peaking System
,”
Energy Procedia
,
69
, pp.
1431
1440
, Beijing, China, Sept. 16–19.
16.
Department of Energy of South Africa
,
2011
,
Integrated Resource Plan for Electricity 2010–2030
,
Government Gazette, Republic of South Africa
.
17.
Department of Energy of South Africa
,
2014
,
Integrated Resource Plan Update
,
Government Gazette, Republic of South Africa
.
18.
Department of Energy of South Africa
,
2014
, “
Renewable Energy Independent Power Producer Procurement Programme (REIPPPP)
,” Republic of South Africa, http://www.ipprenewables.co.za/
19.
Spelling
,
J.
,
2013
, “
Hybrid Solar Gas-Turbine Power Plants—A Thermoeconomic Analysis
,” Ph.D. thesis, Energy Technology, KTH, Stockholm, Sweden.
20.
Leyland
,
G.
,
2002
, “
Multi-Objective Optimisation Applied to Industrial Energy Problems
,” Ph.D. thesis, Energy Systems, Swiss Federal Technology Institute, Lausanne, Switzerland.
21.
CSP Today Global Tracker
,
2014
, “
CSP Projects in South Africa
,” www.csptoday.com.
22.
CSP Today Global Tracker
,
2014
, “
Solar Reserve Redstone CSP Tower Plant
,” www.csptoday.com.
23.
ESKOM
,
2013
, “
Schedule of Standard Prices
,” ESKOM, Johannesburg, South Africa, Report No. SC0207 (2013/14).
24.
Southern African Power Pool
,
2014
, “
SAPP Annual Report 2014
,” Southern African Power Pool, Harare, Zimbabwe, available at: http://www.sapp.co.zw/areports.html
25.
SoDa Solar Radiation Data
,
2013
, “
Time Series of Solar Radiation Data
,” www.soda-is.com
26.
Kistler
,
B.
,
1986
, “
A User's Manual for DELSOL3: A Computer Code for Calculating the Optical Performance and Optimal System Design for Solar Thermal Central Receiver Plants
,”
Sandia National Laboratories
,
Albuquerque, NM
, Technical Report No. SAND86-8018.
27.
Collado
,
F.
,
2008
, “
Quick Evaluation of the Annual Heliostat Field Efficiency
,”
Sol. Energy Vol.
,
82
(
4
), pp.
379
384
.
28.
Duffie
,
J.
, and
Beckmann
,
W.
,
2006
,
Solar Engineering of Thermal Processes
,
3rd ed.
,
Wiley
,
Hoboken, NJ
.
29.
Gilman
,
P.
,
Blair
,
N.
,
Mehos
,
M.
,
Christensen
,
C.
, and
Janzou
,
S.
,
2008
, “
Solar Advisor Model User Guide for Version 2.0
,”
National Renewable Energy Laboratory, Golden, CO
, Technical Report No.
NREL
/TP-670-43704.
30.
Incropera
,
F.
,
DeWitt
,
D.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
6th ed.
,
Wiley
,
New York
.
31.
Staine
,
F.
,
1995
, “
Intégration Énergetique des Procedes Industriels par la Method du Pincement etendue aux facteurs Exergetiques
,” Ph.D. thesis, Energy Systems, Swiss Federal Technology Institute, Lausanne, Switzerland.
32.
Thermoflow
,
2014
, “
Thermoflex Modular Program for Thermal Power Systems
,”
Thermoflow Inc.
,
Southborough, MA
, http://www.thermoflow.com
33.
Solar Energy Laboratory at UW-M
,
2007
, “
TRNSYS 16 a Transient System Simulation Program
,”
University of Wisconsin
,
Madison, WI
.
34.
Schwarzbözl
,
P.
,
2006
, “
A TRNSYS Model Library for Solar Thermal Electric Components (STEC)
,” Release 3.0, Deutsches Zentrum für Luft und Raumfahrt e.V (DLR), Köln, Germany.
35.
Spelling
,
J.
,
Laumert
,
B.
, and
Fransson
,
T.
,
2012
, “
Optimal Gas-Turbine Design for Hybrid Solar Power Plant Operation
,”
ASME J. Eng. Gas Turbines Power
,
134
(
9
), p.
092301
.
36.
Jones
,
S.
,
Pitz-Paal
,
R.
,
Schwarzbözl
,
P.
,
Blair
,
N.
, and
Cable
,
R.
,
2001
, “
TRNSYS Modeling of the SEGS VI Parabolic Trough Solar Electric Generating System
,”
Solar Forum: Solar Energy: The Power to Choose
,
Washington, DC
, Apr. 21–25.
37.
Cooke
,
D.
,
1983
, “
Modeling of Off-Design Turbine Pressures by Stodola's Ellipset
,”
Energy Inc.
,
Richmond, VA
.
38.
CSP Today
,
2013
, “
CSP Solar Tower Report 2014: Cost, Performance and Thermal Storage
,” FC Business Intelligence, London.
39.
CSP Today
,
2013
, “
CSP Today Markets Report 2014
,” FC Business Intelligence, London.
40.
Turchi
,
C.
, and
Heath
,
G.
,
2013
, “
Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-5500-57625.
41.
WorleyParsons Group
,
2009
, “
CSP Parabolic Trough Plant Cost Assessment
,”
National Renewable Energy Laboratory, Golden, CO
, Technical Report No. NREL-0-LS-019-0001.
42.
A. T.
Kearney
,
2010
, “
Solar Thermal Electricity 2025: Clean Electricity on Demand: Attractive STE Cost Stabilize Energy Production
,” A. T. Kearney GmbH, Düsseldorf, Germany, https://www.atkearney.de/documents/856314/1214532/BIP_Solar_Thermal_Electricity_2025.pdf
43.
SolarReserve
,
2015
, “
Crescent Dunes CSP Project
,”
factsheet and description SolarReserve LLC
,
Santa Monica, CA
, accessed from www.solarreserve.com
44.
Abengoa Solar
,
2011
, “
Cerro Dominador CSP Project
,”
Abengoa Solar, Seville
,
Spain
, accessed from www.abengoa.com
45.
Möst
,
D.
, and
Keles
,
D.
,
2010
, “
A Survey of Stochastic Modelling Approaches for Liberalised Electricity Markets
,”
Eur. J. Oper. Res.
,
207
(
2
), pp.
543
556
.
46.
CSP Today Global Tracker
,
2014
, “
Solar Reserve Copiapó PV-CSP Project
,”
FC Business Intelligence
,
London
, www.csptoday.com
47.
CAISO
,
2014
, “
Annual Report on Market Issues and Performance
,”
California ISO Department of Market Monitoring
,
Folsom, CA
.
48.
Gálaz
,
R.
,
2012
, “
Alternativas de Comercialización Actuales en el Mercado Chileno
,” seminar organized by Valgesta Energía S.A., Santiago, Chile.
You do not currently have access to this content.