This paper presents the optimization of a solar-powered humidification–dehumidification (HDH) desalination system for remote areas where it is assumed that only minimal external electric power (for operating control systems and auxiliaries) is available. This work builds on a previous system by disconnecting the condenser from the saline water cycle and by introducing a solar air heater (SAH) to further augment the humidification performance. In addition, improved thermal simulation models for the condenser and the humidifier are used to obtain more accurate productivity estimations. The heuristic gradient projection (HGP) optimization procedure is also refactored to reduce the number of function evaluations, to reach the minimum unit cost of produced fresh water, compared to genetic algorithms (GAs). A case study which assumes a desalination plant on the Red Sea near the city of Hurghada, Egypt, is presented. The optimum systems are shown to significantly reduce the unit cost of fresh water production below the reported minimum ($1.3/m3 compared to $3/m3), while keeping specific energy consumption within the reported range, 120–550 kWh/m3, for solar HDH systems.

References

References
1.
Ghermandi
,
A. A.
, and
Messalem
,
R.
,
2009
, “
Solar-Driven Desalination With Reverse Osmosis: The State of the Art
,”
Desalin. Water Treat.
,
7
, pp.
285
296
.
2.
Al-Karaghouli
,
A.
, and
Kazmerski
,
L. L.
,
2013
, “
Energy Consumption and Water Production Cost of Conventional and Renewable Energy Powered Desalination Processes
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
343
356
.
3.
Sharqawy
,
M. H.
,
Lienhard
,
J. H.
, and
Zubair
,
S. M.
,
2010
, “
On Thermal Performance of Seawater Cooling Towers
,”
ASME J. Eng. Gas Turbines Power
,
133
(
4
), p.
043001
.
4.
Narayan
,
G.
,
Sharqawy
,
M.
,
Summers
,
E.
,
Lienhard
,
J.
,
Zubair
,
S.
, and
Antar
,
M.
,
2010
, “
The Potential of Solar-Driven Humidification–Dehumidification Desalination for Small-Scale Decentralized Water Production
,”
Renewable Sustainable Energy Rev.
,
14
(
4
), pp.
1187
1201
.
5.
Devres
,
Y. O.
,
1994
, “
Psychrometric Properties of Humid Air: Calculation Procedures
,”
Appl. Energy
,
48
(
1
), pp.
1
18
.
6.
Zamen
,
M.
,
Amidpour
,
M.
, and
Soufari
,
S. M.
,
2009
, “
Cost Optimization of a Solar Humidification–Dehumidification Desalination Unit Using Mathematical Programming
,”
Desalination
,
239
, pp.
92
99
.
7.
El-Morsi
,
M.
,
Hamza
,
K.
,
Nassef
,
A. O.
,
Metwalli
,
S. M.
, and
Saitou
,
K.
,
2012
, “
Integrated Optimization of a Solar-Powered Humidification–Dehumidification Desalination System for Small Communities
,”
ASME
Paper No. DETC2012-70783.
8.
Abd El-Aziz
,
K. M.
,
El-Morsi
,
M.
,
Hamza
,
K.
,
Nassef
,
A. O.
,
Metwalli
,
S. M.
, and
Saitou
,
K.
,
2013
, “
Optimum Solar-Powered HDH Desalination System for Semi-Isolated Communities
,”
ASME
Paper No. DETC2013-12876.
9.
Farid
,
M. M.
,
Parekh
,
S.
,
Selman
,
J. R.
, and
Al-Hallag
,
S.
,
2002
, “
Solar Desalination With a Humidification–Dehumidification Cycle: Mathematical Modeling of the Unit
,”
Desalination
,
151
(2), pp.
153
164
.
10.
Al-Hallaj
,
S.
,
Farid
,
M.
, and
Tamimi
,
A.
,
1998
, “
Solar Desalination With a Humidification–Dehumidification Cycle: Performance of the Unit
,”
Desalination
,
120
(
3
), pp.
273
280
.
11.
Yuan
,
G.
, and
Zhang
,
H.
,
2007
, “
Mathematical Modeling of a Closed Circulation Solar Desalination Unit With Humidification–Dehumidification
,”
Desalination
,
205
, pp.
156
162
.
12.
Ben-Bacha
,
H.
,
Damak
,
T.
, and
Bouzguenda
,
M.
,
2003
, “
Experimental Validation of the Distillation Module of a Desalination Station Using the SMCEC Principle
,”
Renewable Energy
,
28
(
15
), pp.
2335
2354
.
13.
Farsad
,
S.
, and
Behzadmehr
,
A.
,
2011
, “
Analysis of a Solar Desalination Unit With Humidification–Dehumidification Cycle Using DoE Method
,”
Desalination
,
278
(1–2), pp.
70
76
.
14.
Orfi
,
J.
,
Galanis
,
N.
, and
Laplante
,
M.
,
2007
, “
Air Humidification–Dehumidification for a Water Desalination System Using Solar Energy
,”
Desalination
,
203
, pp.
471
481
.
15.
Metwalli
,
S. M.
,
2002
,
Optimum Design: Advanced Lecture Notes
,
Cairo University Press
,
Cairo, Egypt
.
16.
Metwalli
,
S. M.
,
2004
, “
Synthesis Paradigm in Computer Aided Design and Optimization of Mechanical Components and Systems
,” Eighth Cairo University Conference on Mechanical Design and Production, Cairo, Egypt, Jan. 4–6, pp. 3–11.
17.
Metwalli
,
S. M.
,
2012
, “
Heuristic GP Optimization Technique for Design Synthesis of Monotonic Objectives
,”
World Scientific Proceedings Series on Computer Engineering and Information Science
, Vol.
7
,
C.
Kahraman
,
E. E.
Kerre
, and
F. T.
Bozbura
, eds.,
World Scientific Publishing
, Hackensack, NJ, pp.
1233
1238
.,
18.
Chapman
,
C. D.
,
Saitou
,
K.
, and
Jakiela
,
M. J.
,
1994
, “
Genetic Algorithms as an Approach to Configuration and Topology Design
,”
ASME J. Mech. Des.
,
116
(
4
), pp.
1005
1012
.
19.
Stine
,
W.
, and
Geyer
,
M.
,
2001
,
Power From the Sun
, John Wiley and Sons, NJ, Chap. 3.
20.
Hottel
,
H. C.
, and
Whillier
,
A.
,
1958
, “
Evaluation of Flat-Plate Collector Performance
,”
Conference on the Use of Solar Energy
, Tucson, AZ, Volume 2, Part 1, Page 74–104.
21.
Duffie
,
J. A.
, and
Beckman
,
W.
,
1974
,
Solar Engineering of Thermal Processes
,
2nd ed.
,
Wiley-Interscience
, New York, pp.
250
296
.
22.
Gill
,
R.
,
Singh
,
S.
, and
Singh
,
P. P.
,
2012
, “
Low Cost Solar Air Heater
,”
Energy Convers. Manage.
,
57
, pp.
131
142
.
23.
Mhergoo
,
M.
, and
Amidpour
,
M.
,
2011
, “
Derivation of Optimal Geometry of a Multi-Effect Humidification–Dehumidification Desalination Unit: A Constructal Design
,”
Desalination
,
281
, pp.
234
242
.
24.
Cooling Tower Depot
,
2013
, “
Cooling Tower Depot Parts Warehouse: CTD-19MA10
,” Cooling Tower Depot, Inc., Golden, CO, http://www.coolingtowerdepot.com/content/parts/product-detail/1608
25.
“Alibaba.com Hong Kong Limited,” http://www.alibaba.com/
26.
Rao
,
S. S.
,
1996
,
Engineering Optimization: Theory and Practice
,
3rd ed.
,
Wiley-Interscience
, New York, pp.
455
459
.
27.
Abd El-Aziz
,
K. M.
,
El-Morsi
,
M.
,
Hamza
,
K.
,
Nassef
,
A. O.
,
Metwalli
,
S. M.
, and
Saitou
,
K.
,
2014
, “
Optimum Solar HDH Desalination for Semi-Isolated Communities Using HGP and GA's
,”
ASME
Paper No. DETC2014-34598.
28.
Metwalli
,
S. M.
, and
Mayne
,
R. W.
,
1977
, “
New Optimization Techniques
,”
ASME
Paper No. 77-DAC-9.
29.
Elzoghby
,
A. A.
,
Metwalli
,
S. M.
, and
Shawki
,
G. S. A.
,
1980
, “
Linearized Ridge-Path Method for Function Minimization
,”
J. Optim. Theory Appl.
,
30
(
2
), pp.
161
179
.
30.
Egan
,
C.
,
2013
, “
Optimera—A Multithreaded Optimization Library in C#
,” http://cosmobomb.com/wp/?page_id=656
31.
Microsoft
,
2010
, “
Microsoft Visual C# Express (2010)
,” Microsoft Corp., Albuquerque, NM, http://www.microsoft.com/visualstudio/eng/downloads
32.
2016, “EnergyPlus Energy Simulation Software,” National Renewable Energy Laboratory, Golden, CO.
33.
Ettouney
,
H. M.
, and
El-Dessouky
,
H. T.
,
2002
, “
Evaluating the Economics of Desalination
,”
Chem. Eng. Prog.
,
98
(
12
), pp.
32
40
.
34.
NREL
,
2011
,
System Advisor Model
,
National Renewable Energy Laboratory
,
Golden, CO
.
35.
Müller-Holst
,
H.
,
2006
, “
Solar Thermal Desalination Using the Multiple Effect Humidification (MEH) Method
,”
Solar Desalination for the 21st Century
, Springer Science+Business Media, New York, pp.
215
225
.
36.
Skinner
,
J. E.
,
Strasser
,
M. N.
,
Brown
,
B. M.
, and
Selvam
,
R. P.
,
2014
, “
Testing of High-Performance Concrete as a Thermal Energy Storage Medium at High Temperatures
,”
ASME J. Sol. Energy Eng.
,
136
(
2
), p.
021004
.
37.
Ma
,
Z.
,
Glatzmaier
,
G.
, and
Mehos
,
M.
,
2014
, “
Fluidized Bed Technology for Concentrating Solar Power With Thermal Energy Storage
,”
ASME J Sol. Energy Eng.
,
136
(
3
), p.
031014
.
You do not currently have access to this content.