A phosphosilicate polymer spin-on glass dopant has been adapted to produce a screen printable N-type diffusion pastes using different types of nanoparticles as functional additives to quantitatively change the doping strength of the paste. Strong qualitative and quantitative differences in the resulting phosphorous concentration profiles after diffusion have been found between different compositions. Not only is an intermediate doping level obtainable if silicon nanoparticles are used instead of silica but also a shallower dopant depth is also achieved. The electrical quality of the layer formed by diffusing phosphorus into the surface of a P-type silicon wafer has been investigated by the fabrication and testing of P-N junction solar cells. The devices exhibit diodelike current–voltage (IV) characteristics with open-circuit voltages of 0.437 V and 0.523 V and short-circuit current densities of 1.88 mA/cm2 and 4.78 mA/cm2 indicating a low doping level of the cell emitter and a relatively high series resistance of the junction.

References

References
1.
Szlufcik
,
J.
,
Elgamel
,
E.
,
Ghannam
,
M.
,
Nijs
,
J.
, and
Mertens
,
R.
,
1991
, “
Simple Integral Screen Printing Process for Selective Emitter Polycrystalline Silicon Solar Cells
,”
Appl. Phys. Lett.
,
59
(
13
), pp.
1583
1584
.
2.
Tonini
,
D.
,
Bottosso
,
C.
,
Cellere
,
G.
,
Furin
,
V.
,
Galiazzo
,
M.
,
Kumar
,
P.
,
Tanner
,
D.
, and
Voltan
,
A.
,
2011
, “
Efficiency Gain in c-Si Cells Through Selective Emitter and Double Printing
,”
Energy Procedia
,
8
(1), pp.
598
606
.
3.
Strehlke
,
S.
,
Sarti
,
S.
,
Krotkus
,
A.
,
Grigoras
,
K.
, and
Levy-Clement
,
C.
,
1997
, “
The Porous Silicon Emitter Concept Applied to Multicrystalline Silicon Solar Cells
,”
Thin Solid Films
,
297
(
1–2
), pp.
291
295
.
4.
Lee
,
E.
,
Cho
,
K.
,
Oh
,
D.
,
Shim
,
J.
,
Lee
,
H.
,
Choi
,
J.
,
Kim
,
J.
,
Shin
,
J.
,
Lee
,
S.
, and
Lee
,
H.
,
2012
, “
Exceeding 19% Efficient 6 Inch Screen Printed Crystalline Silicon Solar Cells With Selective Emitter
,”
Renewable Energy
,
42
(1), pp.
95
98
.
5.
Liang
,
Z.
,
Zeng
,
F.
,
Song
,
H.
, and
Shen
,
H.
,
2013
, “
Effect on Porous Si and an Etch-Back Process on the Performance of a Selective Emitter Solar Cell
,”
Sol. Energy. Mater. Sol. Cells
,
109
, pp.
26
32
.
6.
Dube
,
C. E.
,
Tsefrekas
,
B.
,
Buzby
,
D.
,
Tavares
,
R.
,
Zhang
,
W.
,
Gupta
,
A.
,
Low
,
R. J.
,
Skinner
,
W.
, and
Mullin
,
J.
,
2011
, “
High Efficiency Selective Emitter Cells Using Patterned Ion Implantation
,”
Energy Procedia
,
8
(1), pp.
706
711
.
7.
Prathap
,
P.
,
Bartringer
,
J.
, and
Slaoui
,
A.
,
2013
, “
Selective Emitter Formation by Laser Doping of Spin-On Sources
,”
Appl. Surf. Sci.
,
278
(1), pp.
173
179
.
8.
Antoniadis
,
H.
,
Jiang
,
F.
,
Shan
,
W.
, and
Liu
,
Y.
,
2010
, “
All Screen Printed Mass Produced Silicon Ink Selective Emitter Solar Cells
,”
35th Photovoltaic Specialists Conference (PVSC)
,
Honolulu, HI
, June 20–25, pp.
1193
1196
.
9.
Poplavsky
,
D.
, and
Abbott
,
M.
,
2013
, “
Methods of Forming a Low Resistance Silicon–Metal Contact
,” Assignee: Innovalight, Inc., Sunnyvale, CA, U.S. Patent No. 8,361,834 B2.
10.
Recart
,
F.
,
Freire
,
I.
,
Perez
,
L.
,
Lago-Aurrekoetxea
,
R.
,
Jimeno
,
J. C.
, and
Bueno
,
G.
,
2007
, “
Screen Printed Boron Emitters for Solar Cells
,”
Sol. Energy Mater Sol. Cells
,
91
(
10
), pp.
897
902
.
11.
Edwards
,
M.
,
Bocking
,
J.
,
Cotter
,
E.
, and
Bennett
,
N.
,
2008
, “
Screen-Print Selective Diffusions for High-Efficiency Industrial Silicon Solar Cells
,”
Prog. Photovoltaics
,
16
(
1
), pp.
31
45
.
12.
Salami
,
J.
,
Pham
,
T.
,
Khadilkar
,
C.
,
McViker
,
K.
, and
Shaikh
,
A.
,
2004
, “
Characterization of Screen Printed Phosphorous Diffusion Paste for Silicon Solar Cells
,”
Technical Digest of the 14th Photovoltaic Solar Energy Conference (PVSEC)
,
Bangkok, Thailand
, Jan. 26–Feb. 1, pp.
263
264
.
13.
Kwon
,
T. W.
,
Yang
,
D. H.
,
Ju
,
M. K.
,
Jung
,
W. W.
,
Kim
,
S. Y.
,
Lee
,
Y. W.
,
Gong
,
D. Y.
, and
Yi
,
J.
,
2011
, “
Screen Printed Phosphorus Diffusion for Low-Cost and Simplified Industrial Mono-Crystalline Silicon Solar Cells
,”
Sol. Energy Mater Sol. Cells
,
95
(
1
), pp.
14
17
.
14.
Zhong
,
S.
,
Shen
,
W.
,
Liu
,
F.
, and
Li
,
X.
,
2013
, “
Mass Production of High Efficient Selective Emitter Crystalline Silicon Solar Cells Employing Phosphorus Ink Technology
,”
Sol. Energy Mater Sol. Cells
,
117
(1), pp.
483
488
.
15.
Uzum
,
A.
,
Hamdi
,
A.
,
Nagashima
,
S.
,
Suzuki
,
S.
,
Suzuki
,
H.
,
Yoshiba
,
S.
,
Dhamrin
,
M.
,
Kamisako
,
K.
,
Sato
,
H.
,
Katsuma
,
K.
, and
Kato
,
K.
,
2013
, “
Selective Emitter Formation Process Using Single Screen-Printed Phosphorus Diffusion Source
,”
Sol. Energy Mater Sol. Cells
,
109
(1), pp.
288
293
.
16.
Hilali
,
M.
,
Jeong
,
J. W.
,
Rohatgi
,
A.
,
Meier
,
D. L.
, and
Carrol
,
A. F.
,
2002
, “
Optimization of Self-Doping Ag Paste Firing to Achieve High Fill Factors on Screen-Printed Silicon Solar Cells With a 100 Ω/sq. Emitter
,”
29th Photovoltaic Specialists Conference
(
PVSC
),
New Orleans, LA
, May 19–24, Poster 1P2.17.
17.
Leung
,
R. Y.
,
Fan
,
W.
, and
Nedbal
,
J.
,
2012
, “
Composition for Forming Doped Regions in Semiconductor Substrates, Methods for Fabricating Such Compositions, and Methods for Forming Doped Regions Using Such Compositions
,” Assignee: Honeywell International Inc., Morristown, NJ, U.S. Patent No. 8,324,089 B2.
18.
Britton
,
D. T.
,
Odo
,
E. A.
,
GoroGonfa
,
G.
,
Jonah
,
E. O.
, and
Härting
,
M.
,
2009
, “
Size Distribution and Surface Characteristics of Silicon Nanoparticles
,”
J. Appl. Crystallogr.
,
42
(
3
), pp.
448
456
.
19.
Jonah
,
E. O.
,
Britton
,
D. T.
,
Beaucage
,
P.
,
Rai
,
D. K.
,
Beaucage
,
G.
,
Magunje
,
B.
,
Ilavsky
,
J.
,
Scriba
,
M. R.
, and
Härting
,
M.
,
2012
, “
Topological Investigation of Electronic Silicon Nanoparticulate Aggregates Using Ultra Small Angle X-Ray Scattering
,”
J. Nanopart. Res.
,
14
(
11
), p.
1249
.
20.
Britton
,
D. T.
, and
Härting
,
M.
,
2009
, “
Printed Nanoparticulate Composites for Silicon Thick-Film Electronics
,”
Pure Appl. Chem.
,
78
(
9
), pp.
1723
1739
.
21.
Richards
,
B. S.
,
Cotter
,
J. E.
,
Honsberg
,
C. B.
, and
Wenham
,
S. R.
,
2000
, “
Novel Uses Of TiO2 in Crystalline Silicon Solar Cells
,”
IEEE 28th Photovoltaic Specialists Conference
(
PVSC
),
Anchorage, AK
, Sept. 15–22, pp.
375
378
.
22.
Roy
,
S. R.
, and
Haji-Sheik
,
A.
,
1996
, “
Modeling and Analysis of a New Multiwafer Hot Wall Phosphorus Doping Reactor
,”
J. Electrochem. Soc.
,
143
(
4
), pp.
1362
1371
.
23.
Shimakura
,
K.
,
Suzuki
,
T.
, and
Yadoiwa
,
Y.
,
1975
, “
Boron and Phosphorus Diffusion Through an SiO2 Layer From a Doped Polycrystalline Si Source Under Various Drive-in Ambients
,”
Sol. State Electr.
,
18
(
11
), pp.
991
995
.
24.
Susa
,
M.
,
Kawagishi
,
K.
,
Tanaka
,
N.
, and
Nagata
,
K.
,
1997
, “
Diffusion Mechanism of Phosphorus From Phosphorous Vapor in Amorphous Silicon Dioxide Film Prepared by Thermal Oxidation
,”
J. Electrochem. Soc.
,
144
(
7
), pp.
2552
2558
.
25.
Ellis
,
K. A.
, and
Buhrman
,
R. A.
,
1999
, “
Phosphorus Diffusion in Silicon Oxide and Oxynitride Gate Dielectrics
,”
Electrochem. Solid Struct.
,
2
(
10
), pp.
516
518
.
26.
Kumar
,
D.
,
Saravanan
,
S.
, and
Suratkar
,
P.
,
2012
, “
Effect of Oxygen Ambient During Phosphorous Diffusion on Silicon Solar Cell
,”
J. Renewable Sustainable Energy
,
4
(
3
), p.
033105
.
27.
Debarge
,
L.
,
Schott
,
M.
,
Muller
,
J. C.
, and
Monna
,
R.
,
2002
, “
Selective Emitter Formation With a Single Screen-Printed P-Doped Paste Deposition Using Out-Diffusion in an RTP-Step
,”
Sol. Energy. Mater. Sol. Cells
,
74
(
1–4
), pp.
71
75
.
You do not currently have access to this content.