A prototype 4 kW solar thermochemical reactor for the continuous splitting of carbon dioxide via the isothermal ceria redox cycle is demonstrated. These first tests of the new reactor showcase both the innovation of continuous on-sun fuel production in a single reactor and remarkably effective heat recovery of the sensible heat of the reactant and product gases. The impact of selection of gas flow rates is explored with respect to reactor fuel productivity and external energy costs of gas separation and pumping. Thermal impacts of gas flow selection are explored by coupling measured temperatures with a computational fluid dynamics (CFD) model to calculate internal temperature distributions and estimate heat recovery. Optimized gas flows selected for operation provide a 75% increase in fuel productivity and reduction in parasitic energy costs by 10% with respect to the design case.

References

References
1.
Eyring
,
L.
,
1991
, “
The Binary Lanthanide Oxides: Synthesis and Identification
,”
Synthesis of Lanthanide and Actinide Compounds
,
G.
Meyer
and
L. R.
Morss
, eds.,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
, p.
201
.
2.
Chueh
,
W. C.
, and
Haile
,
S. M.
,
2010
, “
A Thermochemical Study of Ceria: Exploiting an Old Material for New Modes of Energy Conversion and CO2 Mitigation
,”
Philos. Trans. A Math. Phys. Eng. Sci.
,
368
(
1923
), pp.
3269
3294
.
3.
Ackermann
,
S.
,
Scheffe
,
J. R.
, and
Steinfeld
,
A.
,
2014
, “
Diffusion of Oxygen in Ceria at Elevated Temperatures and Its Application to H2O/CO2 Splitting Thermochemical Redox Cycles
,”
J. Phys. Chem. C
,
118
(
10
), pp.
5216
5225
.
4.
Millot
,
F.
, and
Mierry
,
P. D.
,
1985
, “
A New Method for the Study of Chemical Diffusion in Oxides With Application to Cerium Oxide CeO2−x
,”
J. Phys. Chem. Solids
,
46
(
7
), pp.
797
801
.
5.
Chueh
,
W. C.
,
Falter
,
C.
,
Abbott
,
M.
,
Scipio
,
D.
,
Furler
,
P.
,
Haile
,
S. M.
, and
Steinfeld
,
A.
,
2010
, “
High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria
,”
Science
,
330
(
6012
), pp.
1797
1801
.
6.
Furler
,
P.
,
Scheffe
,
J. R.
, and
Steinfeld
,
A.
,
2012
, “
Syngas Production by Simultaneous Splitting of H2O and CO2 Via Ceria Redox Reactions in a High-Temperature Solar Reactor
,”
Energy Environ. Sci.
,
5
(
3
), pp.
6098
6103
.
7.
Furler
,
P.
,
Scheffe
,
J.
,
Marxer
,
D.
,
Gorbar
,
M.
,
Bonk
,
A.
,
Vogt
,
U.
, and
Steinfeld
,
A.
,
2014
, “
Thermochemical CO2 Splitting Via Redox Cycling of Ceria Reticulated Foam Structures With Dual-Scale Porosities
,”
Phys. Chem. Chem. Phys.
,
16
(
22
), pp.
10503
10511
.
8.
Venstrom
,
L. J.
,
De Smith
,
R. M.
,
Hao
,
Y.
,
Haile
,
S. M.
, and
Davidson
,
J. H.
,
2014
, “
Efficient Splitting of CO2 in an Isothermal Redox Cycle Based on Ceria
,”
Energy Fuels
,
28
(
4
), pp.
2732
2742
.
9.
Panlener
,
R. J.
,
Blumenthal
,
R. N.
, and
Garnier
,
J. E.
,
1975
, “
A Thermodynamic Study of Nonstoichiometric Cerium Dioxide
,”
J. Phys. Chem. Solids
,
36
(
11
), pp.
1213
1222
.
10.
Bader
,
R.
,
Venstrom
,
L. J.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2013
, “
Thermodynamic Analysis of Isothermal Redox Cycling of Ceria for Solar Fuel Production
,”
Energy Fuels
,
27
(
9
), pp.
5533
5544
.
11.
Hao
,
Y.
,
Yang
,
C.-K.
, and
Haile
,
S. M.
,
2013
, “
High-Temperature Isothermal Chemical Cycling for Solar-Driven Fuel Production.
,”
Phys. Chem. Chem. Phys.
,
15
(
40
), pp.
17084
17092
.
12.
Ermanoski
,
I.
,
Miller
,
J. E.
, and
Allendorf
,
M. D.
,
2014
, “
Efficiency Maximization in Solar-Thermochemical Fuel Production: Challenging the Concept of Isothermal Water Splitting
,”
Phys. Chem. Chem. Phys.
,
16
(
18
), pp.
8418
8427
.
13.
Krenzke
,
P. T.
, and
Davidson
,
J. H.
,
2015
, “
On the Efficiency of Solar H2 and CO Production Via the Thermochemical Cerium Oxide Redox Cycle: The Option of Inert-Swept Reduction
,”
Energy Fuels
,
29
(
2
), pp.
1045
1054
.
14.
Bader
,
R.
,
Bala Chandran
,
R.
,
Venstrom
,
L. J.
,
Sedler
,
S. J.
,
Krenzke
,
P. T.
,
De Smith
,
R. M.
,
Banerjee
,
A.
,
Chase
,
T. R.
,
Davidson
,
J. H.
, and
Lipinski
,
W.
,
2015
, “
Design of a Solar Reactor to Split CO2 Via Isothermal Redox Cycling of Ceria
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031007
.
15.
Banerjee
,
A.
,
Bala Chandran
,
R.
, and
Davidson
,
J. H.
,
2015
, “
Experimental Investigation of a Reticulated Porous Alumina Heat Exchanger for High Temperature Gas Heat Recovery
,”
Appl. Therm. Eng.
,
75
, pp.
889
895
.
16.
Bala Chandran
,
R.
,
De Smith
,
R. M.
, and
Davidson
,
J. H.
,
2015
, “
Model of an Integrated Solar Thermochemical Reactor/Reticulated Ceramic Foam Heat Exchanger for Gas-Phase Heat Recovery
,”
Int. J. Heat Mass Transfer
,
81
, pp.
404
414
.
17.
Krueger
,
K. R.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2011
, “
Design of a New 45 kWe High-Flux Solar Simulator for High-Temperature Solar Thermal and Thermochemical Research
,”
ASME J. Sol. Energy Eng.
,
133
(
1
), p.
011013
.
18.
Krueger
,
K. R.
,
Lipiński
,
W.
, and
Davidson
,
J. H.
,
2013
, “
Operational Performance of the University of Minnesota 45 kW e High-Flux Solar Simulator
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
044501
.
19.
Steinfeld
,
A.
, and
Schubnell
,
M.
,
1993
, “
Optimum Aperture Size and Operating Temperature of a Solar Cavity-Receiver
,”
Sol. Energy
,
50
(
1
), pp.
19
25
.
20.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
New York
, pp.
13
109
.
21.
Modest
,
M. F.
,
2003
, “
The Method of Spectral Harmonics (PN-Approximation)
,”
Radiative Heat Transfer
,
Academic Press
, San Diego, CA, pp.
465
492
.
22.
Markham
,
J. R.
,
Solomon
,
P. R.
, and
Best
,
P. E.
,
1990
, “
An FT-IR Based Instrument for Measuring Spectral Emittance of Material at High Temperature
,”
Rev. Sci. Instrum.
,
61
(
12
), p.
3700
.
23.
Yaws
,
C.
,
2010
,
Transport Properties of Chemicals and Hydrocarbons
,
Knovel
,
New York
.
24.
Binnewies
,
M.
, and
Milke
,
E.
,
2002
,
Thermochemical Data of Elements and Compounds
,
Wiley-VCH Verlag GmbH & Co. KGaA
, Weinheim, Germany.
25.
Cussler
,
E. L.
,
1997
, “
Values of Diffusion Coefficients
,”
Diffusion Mass Transfer in Fluid Systems
,
Cambridge University Press
, Cambridge, UK, pp.
117
126
.
26.
ANSYS® Academic Research
,
2011
,
Ansys Fluent Users Guide, Release 14.0
, ANSYS, Inc., Canonsburg, PA, pp.
1715
1762
.
27.
De Smith
,
R. M.
,
2014
, “
Improving the Efficiency of a Ceria Reduction-Oxidation Cycle Through the Choice of Operating Conditions and Ceria Morphology
,” M.S. thesis, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN.
28.
Venstrom
,
L. J.
,
De Smith
,
R. M.
,
Bala Chandran
,
R.
,
Boman
,
D. B.
,
Krenzke
,
P. T.
, and
Davidson
,
J. H.
,
2015
, “
Applicability of an Equilibrium Model To Predict the Conversion of CO2 to CO Via the Reduction and Oxidation of a Fixed Bed of Cerium Dioxide
,”
Energy Fuels
, Article ASAP.
You do not currently have access to this content.