A model of the flexible porous manifold that captures the interaction between the flow field and the deformation of the manifold is developed and applied to understand how the fabric manifold works for conditions expected in solar water heaters. Contrary to the widely held hypothesis that the change of cross-sectional area induced by the fluid–structure interaction is beneficial, the numerical results demonstrate the change of cross-sectional area has no significant impact on the effectiveness of the manifold. In comparison to a rigid porous manifold, the performance of the flexible manifold is slightly worse because the collapse of the manifold encourages entrainment. The dimensionless permeability plays a crucial role in determining the performance and can be selected to limit entrainment and release fluid near the vertical level of neutral buoyancy.

References

References
1.
Wuestling
,
M. D.
,
Klein
,
S. A.
, and
Duffie
,
J. A.
,
1985
, “
Promising Control Alternatives for Solar Water Heating Systems
,”
ASME J. Sol. Energy Eng.
,
107
(
3
), pp.
215
221
.
2.
Hollands
,
K. G. T.
, and
Lightstone
,
M. F.
,
1989
, “
A Review of Low-Flow, Stratified-Tank Solar Water Heating Systems
,”
Sol. Energy
,
43
(
2
), pp.
97
105
.
3.
Han
,
Y. M.
,
Wang
,
R. Z.
, and
Dai
,
Y. J.
,
2009
, “
Thermal Stratification Within the Water Tank
,”
Renewable Sustainable Energy Rev.
,
13
(
5
), pp.
1014
1026
.
4.
Loehrke
,
R. I.
,
Gari
,
H. N.
, and
Sharp
,
M. K.
,
1978
, “
Passive Technique for Enhancing Thermal Stratification in Liquid Storage Tanks
,”
ASME
Paper No. 78-HT-50.
5.
Gari
,
H.
,
Loehrke
,
R.
, and
Holzer
,
J.
,
1979
, “
Performance of an Inlet Manifold for a Stratification Storage Tank
,”
ASME
Paper No. 79-HT-67.
6.
Sharp
,
M. K.
, and
Loehrke
,
R. I.
,
1979
, “
Stratified Thermal Storage in Residential Solar Energy Applications
,”
J. Energy
,
3
(
2
), pp.
106
113
.
7.
Gari
,
H. N.
, and
Loehrke
,
R. I.
,
1982
, “
Controlled Buoyant Jet for Enhancing Stratification in Liquid Storage Tank
,”
ASME J. Fluids Eng.
,
104
(
4
), pp.
475
481
.
8.
Wang
,
S.
, and
Davidson
,
J. H.
,
2014
, “
Performance of Rigid Porous Stratification Manifolds With Interpretation for Off-Design Operation
,”
ASME J. Sol. Energy Eng.
,
136
(
2
), p.
021021
.
9.
Davidson
,
J. H.
, and
Adams
,
D. A.
,
1994
, “
Fabric Stratification Manifolds for Solar Water Heating
,”
ASME J. Sol. Energy Eng.
,
116
(
3
), pp.
130
136
.
10.
Andersen
,
E.
,
Furbo
,
S.
, and
Fan
,
J.
,
2007
, “
Multilayer Fabric Stratification Pipes for Solar Tanks
,”
Sol. Energy
,
81
(
10
), pp.
1219
1226
.
11.
Andersen
,
E.
,
Furbo
,
S.
, and
Hampel
,
M.
,
2008
, “
Investigations on Stratification Devices for Hot Water Heat Stores
,”
Int. J. Energy Res.
,
32
(
3
), pp.
255
263
.
12.
Shah
,
L. J.
,
Andersen
,
E.
, and
Furbo
,
S.
,
2005
, “
Theoretical and Experimental Investigations of Inlet Stratifiers for Solar Storage Tanks
,”
Appl. Therm. Eng.
,
25
(
14–15
), pp.
2086
2099
.
13.
Loehrke
,
R. I.
,
Holzer
,
J. C.
, and
Gari
,
H. N.
,
1979
, “
Stratification Enhancement in Liquid Thermal Storage Tanks
,”
J. Energy
,
3
(
3
), pp.
129
130
.
14.
Gari
,
H. N.
,
1983
, “
Stratification Enhancement in Solar Liquid Thermal Storage Tanks: Analysis and Test of Inlet Manifolds
,” Ph.D. thesis,
Colorado State University
, Fort Collions, CO.
15.
Hughes
,
T. J. R.
, and
Lubliner
,
J.
,
1973
, “
On the One Dimensional Theory of Blood Flow in the Larger Vessels
,”
Math. Biosci.
,
18
(
1–2
), pp.
167
170
.
16.
Whittaker
,
R. J.
,
Heil
,
M.
, and
Jensen
,
O. E.
,
2010
, “
A Rational Derivation of a Tube Law From Shell Theory
,”
Q. J. Mech. Appl. Math.
,
63
(
4
), pp.
465
496
.
17.
Heil
,
M.
, and
Jensen
,
O. E.
,
2003
, “
Flows in Deformable Tubes and Channels
,”
Flow Past Highly Compliant Boundaries and in Collapsible Tubes
,
P. W.
Carpenter
, and
T. J.
Pedley
, eds.,
Springer
, Dordrecht, pp. 21–22.
18.
Gebart
,
B.
,
1992
, “
Permeability of Unidirectional Reinforcements for RTM
,”
J. Compos. Mater.
,
26
(
8
), pp.
1100
1133
.
19.
Belov
,
E. B.
,
Lomov
,
S. V.
, and
Verpoest
,
I.
,
2004
, “
Modelling of Permeability of Textile Reinforcements: Lattice Boltzmann Method
,”
Compos. Sci. Technol.
,
64
(
7
), pp.
1069
1080
.
20.
Chen
,
Z. R.
,
Ye
,
L.
, and
Lu
,
M.
,
2010
, “
Permeability Predictions for Woven Fabric Preforms
,”
J. Compos. Mater.
,
44
(
13
), pp.
1569
1586
.
21.
Tamayol
,
A.
, and
Bahrami
,
M.
,
2011
, “
Transverse Permeability of Fibrous Porous Media
,”
Phys. Rev. E
,
83
(
4
), p.
046314
.
22.
Shapiro
,
A. H.
,
1977
, “
Steady Flow in Collapsible Tubes
,”
ASME J. Biomech. Eng.
,
99
(
3
) pp.
126
147
.
23.
Bertram
,
C. D.
,
2009
, “
Fluid Flow in Distensible Vessels
,”
Clin. Exp. Pharmacol. Physiol.
,
36
(
2
), pp.
206
216
.
24.
Elad
,
D.
,
Sahar
,
M.
, and
Avidor
,
J. M.
,
1992
, “
Steady Flow Through Collapsible Tubes: Measurements of Flow and Geometry
,”
ASME J. Biomech. Eng.
,
114
(
1
), pp.
84
91
.
25.
Kececioglu
,
I.
,
McClurken
,
M. E.
, and
Kamm
,
R. D.
,
1981
, “
Steady, Supercritical Flow in Collapsible Tubes—1. Experimental Observations
,”
J. Fluid Mech.
,
109
, pp.
367
389
.
26.
Heil
,
M.
,
1999
, “
Airway Closure: Occluding Liquid Bridges in Strongly Buckled Elastic Tubes
,”
ASME J. Biomech. Eng.
,
121
(
5
), pp.
487
493
.
27.
McClurken
,
M. E.
,
Kececioglu
,
I.
, and
Kamm
,
R. D.
,
1981
, “
Steady, Supercritical Flow in Collapsible Tubes—2. Theoretical Studies
,”
J. Fluid Mech.
,
109
, pp.
391
415
.
28.
Perry
,
R. H.
,
1997
,
Perry's Chemical Engineers' Handbook
,
7th ed.
,
McGraw-Hill
, New York, pp.
6-32
6-33
.
29.
Jinyun
,
Z.
,
Yi
,
L.
, and
Lam
,
J.
,
2010
, “
The Poisson Ratio and Modulus of Elastic Knitted Fabrics
,”
Text. Res. J.
,
80
(
18
), pp.
1965
1969
.
30.
Purchas
,
D. B.
, and
Sutherland
,
K.
,
2002
,
Handbook of Filter Media
,
2nd ed.
,
Elsevier Science & Technology
, Oxford, UK, pp.
69
71
.
31.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
,
4th ed.
,
Wiley
, Hoboken, NJ, p.
488
.
32.
Lin
,
J.
,
2010
, “
Prediction of Elastic Properties of Plain Weave Fabric Using Geometrical Modeling
,”
Woven Fabric Engineering
, Polona Dobnik Dubrovski, ed.,
InTech
, Rijeka, Croatia.
You do not currently have access to this content.