This paper describes a methodology to evaluate the storage capacity that should support a photo-voltaic (PV) power plant in order to reduce the power imbalance generated by the forecast error. This is obtained through a probabilistic analysis performed on an ensemble of synthetic data. The synthetic data signals are generated starting from at least 1 year of measured data and reproduce the same statistical distribution and the same Fourier power spectrum (FPS) shape.

References

References
1.
Council of the European Union
,
2007
, Brussels European Council, Mar. 8/9, 2007. Presidency Conclusions, May 2, 2007, Brussels, Belgium.
2.
Klessmann
,
C.
,
Held
,
A.
,
Rathmann
,
M.
, and
Ragwitz
,
M.
,
2011
, “
Status and Perspectives of Renewable Energy Policy and Deployment in the European Union–What Is Needed to Reach the 2020 Targets?
Energy Policy
,
39
(
12
), pp.
7637
7657
.
3.
Möst
,
D.
, and
Fichtner
,
W.
,
2010
, “
Renewable Energy Sources in European Energy Supply and Interactions With Emission Trading
,”
Energy Policy
,
38
(
6
), pp.
2898
2910
.
4.
Tuohy
,
A.
,
Meibom
,
P.
,
Denny
,
E.
, and
O'Malley
,
M.
,
2009
, “
Unit Commitment for Systems With Significant Wind Penetration
,”
IEEE Trans. Power Syst.
,
24
(
2
), pp.
592
601
.
5.
Chattopadhyay
,
D.
,
2011
, “
Scale Efficient Network Development to Support Renewable Generation Development
,”
IEEE Trans. Sustainable Energy
,
2
(
3
), pp.
329
339
.
6.
Evans
,
A.
,
Strezov
,
V.
, and
Evans
,
T. J.
,
2012
, “
Assessment of Utility Energy Storage Options for Increased Renewable Energy Penetration
,”
Renewable Sustainable Energy Rev.
,
16
(
6
), pp.
4141
4147
.
7.
Teleke
,
S.
,
Baran
,
M. E.
,
Huang
,
A. Q.
,
Bhattacharya
,
S.
, and
Anderson
,
L.
,
2009
, “
Control Strategies for Battery Energy Storage for Wind Farm Dispatching
,”
IEEE Trans. Energy Convers.
,
24
(
3
), pp.
725
732
.
8.
Swierczynski
,
M.
,
Stroe
,
D. I.
,
Stan
,
A. I.
, and
Teodorescu
,
R.
,
2015
, “
Lifetime and Economic Analyses of Lithium-Ion Batteries for Balancing Wind Power Forecast Error
,”
Int. J. Energy Res.
,
39
(
6
), pp.
760
770
.
9.
Madsen
,
H.
,
Pinson
,
P.
,
Kariniotakis
,
G.
,
Haa
,
N.
, and
Nielsen
,
T. S.
,
2005
, “
Standardizing the Performance Evaluation of Short-Term Wind Power Prediction Models
,”
Wind Eng.
,
29
(
6
), pp.
475
489
.
10.
Bludszuweit
,
H.
,
Domínguez-Navarro
,
J. A.
, and
Llombart
,
A.
,
2008
, “
Statistical Analysis of Wind Power Forecast Error
,”
IEEE Trans. Power Syst.
,
23
(
3
), pp.
983
991
.
11.
Rudolf
,
V.
, and
Papastergiou
,
K. D.
,
2013
, “
Financial Analysis of Utility Scale Photovoltaic Plants With Battery Energy Storage
,”
Energy Policy
,
63
, pp.
139
146
.
12.
Hanna
,
R.
,
Kleissl
,
J.
,
Nottrott
,
A.
, and
Ferry
,
M.
,
2014
, “
Energy Dispatch Schedule Optimization for Demand Charge Reduction Using a Photovoltaic-Battery Storage System With Solar Forecasting
,”
Sol. Energy
,
103
, pp.
269
287
.
13.
Kabir
,
M. N.
,
Mishra
,
Y.
,
Ledwich
,
G.
,
Xu
,
Z.
, and
Bansal
,
R. C.
,
2014
, “
Improving Voltage Profile of Residential Distribution Systems Using Rooftop PVs and Battery Energy Storage Systems
,”
Appl. Energy
,
134
, pp.
290
300
.
14.
Pierro
,
M.
,
Bucci
,
F.
,
Cornaro
,
C.
,
Maggioni
,
E.
,
Perotto
,
A.
,
Pravettoni
,
M.
, and
Spada
,
F.
,
2015
, “
Model Output Statistics Cascade to Improve Day Ahead Solar Irradiance Forecast
,”
Sol. Energy
,
117
, pp.
99
113
.
15.
Cornaro
,
C.
,
Pierro
,
M.
, and
Bucci
,
F.
,
2014
, “
Master Optimization Process Based on Neural Networks Ensemble for 24-h Solar Irradiance Forecast
,”
Sol. Energy
,
111
, pp.
297
312
.
16.
Eisencraft
,
M.
, and
Kato
,
D. M.
,
2009
, “
Spectral Properties of Chaotic Signals With Applications in Communications
,”
Nonlinear Anal.
,
71
(
12
), pp.
e2592
e2599
.
You do not currently have access to this content.