A methanol synthesis unit (MSU) that directly converts carbon dioxide and hydrogen into methanol and water was developed and tested. The MSU consists of: a high-pressure side that includes a compressor, a reactor, and a throttling valve; and a low-pressure side that includes a knockout drum, and a mixer where fresh gas enters the system. Methanol and water are produced at high pressure in the reactor and then exit the system under low pressure and temperature in the knockout drum. The remaining, unreacted recycle gas that leaves the knockout drum is mixed with fresh synthesis gas before being sent back through the synthesis loop. The unit operates entirely on electricity and includes a high-pressure electrolyzer to obtain gaseous hydrogen and oxygen directly from purified water. Thus, the sole inputs to the trailer are water, carbon dioxide, and electricity, while the sole outputs are methanol, oxygen, and water. A distillation unit separates the methanol and water mixture on site so that the synthesized water can be reused in the electrolyzer. Here, we describe and characterize the operation of the MSU and offer some possible design improvements for future iterations of the device, based on experience.

References

References
1.
Hader
,
R. N.
,
Wallace
,
R. D.
, and
McKinney
,
R. W.
,
1952
, “
Formaldehyde From Methanol
,”
Ind. Eng. Chem.
,
44
(
7
), pp.
1508
1518
.
2.
Hosseininejad
,
S.
,
Afacan
,
A.
, and
Hayes
,
R. E.
,
2012
, “
Catalytic and Kinetic Study of Methanol Dehydration to Dimethyl Ether
,”
Chem. Eng. Res. Des.
,
90
(
6
), pp.
825
833
.
3.
Olah
,
G. A.
,
Goeppert
,
A.
, and
Prakash
,
G. K. S.
,
2009
, “
Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons
,”
J. Org. Chem.
,
74
(
2
), pp.
487
498
.
4.
Adams
,
J.
,
Clement
,
D.
, and
Graham
,
S.
,
1982
, “
Synthesis of Methyl-Tbutyl Ether From Methanol and Isobutene Using a Clay Catalyst
,”
Clays Clay Mater.
,
30
(
2
), pp.
129
134
.
5.
Singh
,
A. D.
, and
Krase
,
N. W.
,
1935
, “
Synthesis of Acetic Acid From Methanol and Carbon Monoxide
,”
Ind. Eng. Chem.
,
27
(
8
), pp.
909
914
.
6.
Bromberg
,
L.
, and
Cheng
,
W.
,
2010
, “
Methanol as an Alternative Transportation Fuel in the US: Options for Sustainable and/or Energy-Secure Transportation
,” Sloan Automotive Laboratory, Cambridge, MA, Technical Report UT-Battelle Subcontract No. 4000096701.
7.
Nichols
,
R. J.
,
2003
, “
The Methanol Story: A Sustainable Fuel for the Future
,”
J. Sci. Ind. Res.
,
62
(1–2), pp.
97
105
.
8.
Nowell
,
G. P.
,
1994
, “
On the Road With Methanol: The Present and Future Benefits of Methanol Fuel
,” Acurex Environmental, Durham, NC, Technical Report No. 2474.
9.
Powell
,
T.
,
1975
, “
Racing Experiences With Methanol and Ethanol-Based Motor-Fuel Blends
,” Society of Automotive Engineers,
SAE
Paper No. 750124.
10.
Bahrami
,
H.
, and
Faghri
,
A.
,
2013
, “
Review and Advances of Direct Methanol Fuel Cells: Part II: Modeling and Numerical Simulation
,”
J. Power Sources
,
230
, pp.
303
320
.
11.
Li
,
X.
, and
Faghri
,
A.
,
2013
, “
Review and Advances of Direct Methanol Fuel Cells (DMFCs) Part I: Design, Fabrication, and Testing With High Concentration Methanol Solutions
,”
J. Power Sources
,
226
, pp.
223
240
.
12.
Methanol Institute
,
2013
, “
The Methanol Industry-Methanol Institute
,” Methanol Institute, Alexandria, VA, http://www.methanol.org/Methanol-Basics/The-Methanol-Industry.aspx
13.
IHS
,
2013
, “
Driven by China, Global Methanol Demand Rises 23 Percent in Two Years, Unprecedented Demand Growth Expected for 2012 to 2022, Says New IHS Study,” IHS Online Pressroom
, http://press.ihs.com/press-release/country-industry-forecasting/driven-china-global-methanol-demand-rises-23-percent-two-
14.
Yang
,
C.-J.
, and
Jackson
,
R. B.
,
2012
, “
China's Growing Methanol Economy and Its Implications for Energy and the Environment
,”
Energy Policy
,
41
, pp.
878
884
.
15.
Su
,
L.-W.
,
Li
,
X.-R.
, and
Sun
,
Z.-Y.
,
2013
, “
The Consumption, Production and Transportation of Methanol in China: A Review
,”
Energy Policy
,
61
, pp. 130–138.
16.
EPA
,
2012
, “
Methyl Tertiary Butyl Ether (MTBE)
,” U.S. Environmental Protection Agency, Washington, DC, http://www.epa.gov/mtbe/
17.
Lange
,
J.-P.
,
2001
, “
Methanol Synthesis: A Short Review of Technology Improvements
,”
Catal. Today
,
64
(
12
), pp.
3
8
.
18.
Su
,
L.-W.
,
Li
,
X.-R.
, and
Sun
,
Z.-Y.
,
2013
, “
Flow Chart of Methanol in China
,”
Renewable Sustainable Energy Rev.
,
28
, pp.
541
550
.
19.
Graaf
,
G.
,
Stamhuis
,
E.
, and
Beenackers
,
A.
,
1988
, “
Kinetics of Low-Pressure Methanol Synthesis
,”
Chem. Eng. Sci.
,
43
(
12
), pp.
3185
3195
.
20.
Klier
,
K.
,
Chatikavanij
,
V.
,
Herman
,
R.
, and
Simmons
,
G.
,
1982
, “
Catalytic Synthesis of Methanol From CO/H2. Part IV: The Effects of Carbon Dioxide
,”
J. Catal.
,
74
(
2
), pp.
343
360
.
21.
Chinchen
,
G. C.
,
Denny
,
P. J.
,
Parker
,
D. G.
,
Spencer
,
M. S.
, and
Whan
,
D. A.
,
1987
, “
Mechanism of Methanol Synthesis From CO2/CO/H2 Mixtures Over Copper/Zinc Oxide/Alumina Catalysts: Use of 14C-Labelled Reactants
,”
Appl. Catal.
,
30
(
2
), pp.
333
338
.
22.
Grabow
,
L. C.
, and
Mavrikakis
,
M.
,
2011
, “
Mechanism of Methanol Synthesis on Cu Through CO2 and CO Hydrogenation
,”
ACS Catal.
,
1
(
4
), pp.
365
384
.
23.
Lee
,
S.
,
1990
,
Methanol Synthesis Technology
,
CRC Press
,
Boca Raton, FL
.
24.
Olah
,
G. A.
,
Goeppert
,
A.
, and
Prakash
,
G. K. S.
,
2006
,
Beyond Oil and Gas: The Methanol Economy
,
1st ed.
,
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
.
25.
Lemonidou
,
A. A.
,
Valla
,
J.
, and
Vasolos
,
I. A.
,
2003
, “
Methanol Production From Natural Gas: Assessment of CO2 Utilization in Natural Gas Reforming
,”
Carbon Dioxide Recovery and Utilization
,
M.
Aresta
, ed.,
Kluer Academic Publishers
,
Dordrecht
, pp.
379
394
.
26.
International Energy Agency
,
2007
,
Tracking Industrial Energy Efficiency and CO2 Emissions: In Support of the G8 Plan of Action: Energy Indicators
, Energy Indicators,
International Energy Agency
.
27.
Wender
,
I.
,
1996
, “
Reactions of Synthesis Gas
,”
Fuel Process. Technol.
,
48
(
3
), pp.
189
297
.
28.
Saito
,
M.
, and
Murata
,
K.
,
2004
, “
Development of High Performance Cu/ZnO-Based Catalysts for Methanol Synthesis and the Water-Gas Shift Reaction
,”
Catal. Surv. Asia
,
8
(
4
), pp.
285
294
.
29.
Kubota
,
T.
,
Hayakawa
,
I.
,
Mabuse
,
H.
,
Mori
,
K.
,
Ushikoshi
,
K.
,
Watanabe
,
T.
, and
Saito
,
M.
,
2001
, “
Kinetic Study of Methanol Synthesis From Carbon Dioxide and Hydrogen
,”
Appl. Organomet. Chem.
,
15
(
2
), pp.
121
126
.
30.
Saito
,
M.
,
1998
, “
R & D Activities in Japan on Methanol Synthesis From CO2 and H2
,”
Catal. Surv. Jpn.
,
2
(
2
), pp.
175
184
.
31.
Toyir
,
J.
,
Miloua
,
R.
,
Elkadri
,
N. E.
,
Nawdali
,
M.
,
Toufik
,
H.
,
Miloua
,
F.
, and
Saito
,
M.
,
2009
, “
Sustainable Process for the Production of Methanol From CO2 and H2 Using Cu/ZnO-Based Multicomponent Catalyst
,”
Phys. Procedia
,
2
(
3
), pp.
1075
1079
.
32.
Doss
,
B.
,
Ramos
,
C.
, and
Atkins
,
S.
,
2009
, “
Optimization of Methanol Synthesis From Carbon Dioxide and Hydrogen: Demonstration of a Pilot-Scale Carbon-Neutral Synthetic Fuels Process
,”
Energy Fuels
,
23
(
9
), pp.
4647
4650
.
33.
Yang
,
Y.
,
White
,
M. G.
, and
Liu
,
P.
,
2011
, “
A Theoretical Study of Methanol Synthesis From CO2 Hydrogenation on Metal-Doped Cu (111) Surfaces
,”
J. Phys. Chem. A
,
111
(1), pp.
248
256
.
34.
Van-Dal
,
E. S.
, and
Bouallou
,
C.
,
2012
, “
CO2 Abatement Through a Methanol Production Process
,”
Chem. Eng. Trans.
,
29
(
2006
), pp.
463
468
.
35.
Gallucci
,
F.
,
Paturzo
,
L.
, and
Basile
,
A.
,
2004
, “
An Experimental Study of CO2 Hydrogenation Into Methanol Involving a Zeolite Membrane Reactor
,”
Chem. Eng. Process.: Process Intensif.
,
43
(
8
), pp.
1029
1036
.
36.
Gallucci
,
F.
, and
Basile
,
A.
,
2007
, “
A Theoretical Analysis of Methanol Synthesis From CO2 and H2 in a Ceramic Membrane Reactor
,”
Int. J. Hydrogen Energy
,
32
(
18
), pp.
5050
5058
.
37.
Zhang
,
Y.
,
Fei
,
J.
,
Yu
,
Y.
, and
Zheng
,
X.
,
2007
, “
Study of CO2 Hydrogenation to Methanol Over Cu-V/γ-Al2O3 Catalyst
,”
J. Nat. Gas Chem.
,
16
(
1
), pp.
12
15
.
38.
Chinchen
,
G. C.
, and
Spencer
,
M. S.
,
1991
, “
Sensitive and Insensitive Reactions on Copper Catalysts: The Water-Gas Shift Reaction and Methanol Synthesis From Carbon Dioxide
,”
Catal. Today
,
10
(
3
), pp.
293
301
.
39.
Joo
,
O.-S.
,
Jung
,
K.-D.
,
Moon
,
I.
,
Rozovskii
,
A. Y.
,
Lin
,
G. I.
,
Han
,
S.-H.
, and
Uhm
,
S.-J.
,
1999
, “
Carbon Dioxide Hydrogenation to Form Methanol Via a Reverse-Water-Gas-Shift Reaction (the Camere Process)
,”
Ind. Eng. Chem. Res.
,
38
(
5
), pp.
1808
1812
.
40.
Liu
,
G.
,
1985
, “
The Role of CO2 in Methanol Synthesis on Cu-Zn Oxide: An Isotope Labeling Study
,”
J. Catal.
,
96
(
1
), pp.
251
260
.
41.
Energy Information Administration
,
2014
, “
Energy Consumption by Sector: 2.0 Primary Energy Consumption by Source and Sector
, 2011,” U.S. Energy Information Administration, Washington, DC, http://www.eia.gov/totalenergy/data/annual/#consumption
42.
Energy Information Administration
,
2014
, “
Energy Overview: 1.3 Primary Energy Consumption Estimates by Source
, 1949–2012,” U.S. Energy Information Administration, Washington, DC, http://www.eia.gov/totalenergy/data/annual/#summary
43.
BP
,
2014
, “
BP Statistical Review of World Energy 2013
,” BP p.l.c., London, http://www.bp.com/content/dam/bp/pdf/statistical-review/statistical_review_of_world_energy_2013.pdf
44.
Energy Information Administration, Annual Energy Review, 2014, U.S. Energy Information Administration, Washington, DC, Table 1.2 Primary Energy Production by Source, 1949–2012.
45.
Energy Information Administration
,
2015
, “Alternative Fuels Data Center – Fuel Properties Comparison,” U.S. Energy Information Administration, Washington, DC, accessed Feb. 16, 2015, http://www.afdc.energy.gov/fuels/fuel_comparison_chart.pdf
46.
U.S. DOE
,
2013
, “
Report of the Hydrogen Production Expert Panel: A Subcommittee of the Hydrogen & Fuel Cell Technical Advisory Committe
,” U.S. Department of Energy, Washington, DC.
47.
Holladay
,
J.
,
Hu
,
J.
,
King
,
D.
, and
Wang
,
Y.
,
2009
, “
An Overview of Hydrogen Production Technologies
,”
Catal. Today
,
139
(
4
), pp.
244
260
.
48.
Mueller-Langer
,
F.
,
Tzimas
,
E.
,
Kaltschmitt
,
M.
, and
Peteves
,
S.
,
2007
, “
Techno-Economic Assessment of Hydrogen Production Processes for the Hydrogen Economy for the Short and Medium Term
,”
Int. J. Hydrogen Energy
,
32
(
16
), pp.
3797
3810
.
49.
Gosselink
,
J.
,
2002
, “
Pathways to a More Sustainable Production of Energy: Sustainable Hydrogen—A Research Objective for Shell
,”
Int. J. Hydrogen Energy
,
27
(
11–12
), pp.
1125
1129
.
50.
Turner
,
J. A.
,
2004
, “
Sustainable Hydrogen Production
,”
Science
,
305
(
5686
), pp.
972
974
.
51.
Amos
,
W. A.
,
1998
, “
Costs of Storing and Transporting Hydrogen
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-570-25106.
52.
von Helmolt
,
R.
, and
Eberle
,
U.
,
2007
, “
Fuel Cell Vehicles: Status 2007
,”
J. Power Sources
,
165
(
2
), pp.
833
843
.
53.
Sakintuna
,
B.
,
Lamaridarkrim
,
F.
, and
Hirscher
,
M.
,
2007
, “
Metal Hydride Materials for Solid Hydrogen Storage: A Review
,”
Int. J. Hydrogen Energy
,
32
(
9
), pp.
1121
1140
.
54.
Jena
,
P.
,
2011
, “
Materials for Hydrogen Storage: Past, Present, and Future
,”
J. Phys. Chem. Lett.
,
2
(
3
), pp.
206
211
.
55.
Schlapbach
,
L.
, and
Zuttel
,
A.
,
2001
, “
Hydrogen-Storage Materials for Mobile Applications
,”
Nature
,
414
(
6861
), pp.
353
358
.
56.
Zhang
,
J.
,
Fisher
,
T. S.
,
Ramachandran
,
P. V.
,
Gore
,
J. P.
, and
Mudawar
,
I.
,
2005
, “
A Review of Heat Transfer Issues in Hydrogen Storage Technologies
,”
ASME J. Heat Transfer
,
127
(
12
), p.
1391
.
57.
O'Malley
,
K.
,
Ordaz
,
G.
,
Adams
,
J.
,
Randolph
,
K.
,
Ahn
,
C. C.
, and
Stetson
,
N. T.
,
2014
, “
Applied Hydrogen Storage Research and Development: A Perspective From the U.S. Department of Energy
,”
J. Alloys Compd.
,
645
, pp.
S419
S422
.
58.
U.S. DOE, Office of Energy Efficiency and Renewable Energy, The FreedomCAR and Fuel Partnership
,
2009
, “
Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles
,” U.S. Department of Energy, Washington, DC.
59.
Klebanoff
,
L.
, and
Keller
,
J.
,
2012
, “
Final Report for the DOE Metal Hydride Center of Excellence
,”
Sandia National Laboratories
, Albuquerque, NM, Report No. SAND2012-0786.
60.
Zamfirescu
,
C.
, and
Dincer
,
I.
,
2009
, “
Ammonia as a Green Fuel and Hydrogen Source for Vehicular Applications
,”
Fuel Process. Technol.
,
90
(
5
), pp.
729
737
.
61.
Jenkins
,
D. R.
,
2000
, “
Hypersonics Before the Shuttle: A Concise History of the X-15 Research Airplane
,” National Aeronautics and Space Administration, Washington, DC, Technical Report No. NASA SP-2000-4518.
62.
Worrell
,
E.
,
Bernstein
,
L.
,
Roy
,
J.
,
Price
,
L.
, and
Harnisch
,
J.
,
2008
, “
Industrial Energy Efficiency and Climate Change Mitigation
,”
Energy Effic.
,
2
(
2
), pp.
109
123
.
63.
Green
,
L.
, Jr.
,
1982
, “
Ammonia Energy Vector for the Hydrogen Economy
,”
Int. J. Hydrogen Energy
,
7
(
4
), pp.
355
359
.
64.
Avery
,
W.
,
1988
, “
A Role for Ammonia in the Hydrogen Economy
,”
Int. J. Hydrogen Energy
,
13
(
12
), pp.
761
773
.
65.
Lan
,
R.
,
Irvine
,
J. T.
, and
Tao
,
S.
,
2012
, “
Ammonia and Related Chemicals as Potential Indirect Hydrogen Storage Materials
,”
Int. J. Hydrogen Energy
,
37
(
2
), pp.
1482
1494
.
66.
Bartels
,
J. R.
, and
Pate
,
M. B.
,
2008
, “
A Feasibility Study of Implementing an Ammonia Economy
,” MS thesis, Iowa State University, Ames, IA, Paper No. 11132.
67.
Morgan
,
E.
,
Manwell
,
J.
, and
McGowan
,
J.
,
2014
, “
Wind-Powered Ammonia Fuel Production for Remote Islands: A Case Study
,”
Renewable Energy
,
72
, pp.
51
61
.
68.
Pimentel
,
D.
,
Marklein
,
A.
,
Toth
,
M. A.
,
Karpoff
,
M. N.
,
Paul
,
G. S.
,
McCormack
,
R.
,
Kyriazis
,
J.
, and
Krueger
,
T.
,
2009
, “
Food Versus Biofuels: Environmental and Economic Costs
,”
Hum. Ecol.
,
37
(
1
), pp.
1
12
.
69.
Sarin
,
A.
,
2012
,
Biodiesel: Production and Properties
,
Royal Society of Chemistry (RSC)
, Cambridge, UK.
70.
Fukuda
,
H.
,
Kondo
,
A.
, and
Noda
,
H.
,
2001
, “
Biodiesel Fuel Production by Transesterification of Oils
,”
J. Biosci. Bioeng.
,
92
(
5
), pp.
405
416
.
71.
Rosenthal
,
A.
,
1965
, “
Energy Depot—A Concept for Reducing the Military Supply Burden
,”
SAE
Paper No. 650050.
72.
Grimes
,
P.
,
1965
, “
Energy Depot Fuel Production and Utilization
,”
SAE
Paper No. 650051.
73.
Beller
,
M.
, and
Steinberg
,
M.
,
1965
, “
Liquid Fuel Synthesis Using Nuclear Power in a Mobile Energy Depot System
,” Brookhaven National Laboratory, Upton, NY, Technical Report No. BNL 955 (T-396).
74.
Willauer
,
H. D.
,
Hardy
,
D. R.
, and
Williams
,
F. W.
,
2010
, “
The Feasibility and Current Estimated Capital Costs of Producing Jet Fuel at Sea Using Carbon Dioxide and Hydrogen
,” Naval Research Laboratory, Washington, DC, Technical Report No. NRL/MR/6180-10-9300.
75.
Jarosch
,
K.
,
Mazanec
,
T.
,
McDaniel
,
J.
,
Tonkovich
,
A. L.
, and
Fitzgerald
,
S.
,
2006
, “
Compact, Mobile Synthetic Fuel Unit
,”
American Institute of Chemical Engineers Spring National Meeting
,
Orlando, FL
, Apr. 23–27.
76.
Avery
,
W. D. R.
, and
Dugger
,
G.
,
1985
, “
Hydrogen Generation by Otec Electrolysis, and Economical Energy Transfer to World Markets Via Ammonia and Methanol
,”
Int. J. Hydrogen Energy
,
10
(
11
), pp.
727
736
.
77.
Dugger
,
G.
, and
Francis
,
E.
,
1977
, “
Design of an Ocean Thermal Energy Plant Ship to Produce Ammonia Via Hydrogen
,”
Int. J. Hydrogen Energy
,
2
(
3
), pp.
231
249
.
78.
Brown
,
D.
,
Rowe
,
A.
, and
Wild
,
P.
,
2014
, “
Techno-Economic Comparisons of Hydrogen and Synthetic Fuel Production Using Forest Residue Feedstock
,”
Int. J. Hydrogen Energy
,
39
(
24
), pp.
12551
12562
.
79.
DiMascio
,
F.
,
Willauer
,
H. D.
,
Hardy
,
D. R.
,
Lewis
,
M. K.
, and
Williams
,
F. W.
,
2010
, “
Extraction of Carbon Dioxide From Seawater by an Electrochemical Acidification Cell Part I: Initial Feasibility Studies
,”
Naval Research Laboratory
, Washington, DC, Technical Report No. NRL/MR/6180–10-9274.
80.
Willauer
,
H. D.
,
DiMascio
,
F.
,
Hardy
,
D. R.
,
Lewis
,
M. K.
, and
Williams
,
F. W.
,
2011
, “
Extraction of Carbon Dioxide From Seawater by an Electrochemical Acidification Cell Part II—Laboratory Scaling Studies
,”
Naval Research Laboratory
, Washington, DC, Technical Report No. NRL/MR/6180-11-9329.
81.
Dahlgren
,
E.
,
Gocmen
,
C.
,
Lackner
,
K.
, and
van Ryzin
,
G.
,
2013
, “
Small Modular Infrastructure
,”
Eng. Economist
,
58
(
4
), pp.
231
264
.
82.
Research Triangle Institute International
,
2010
, “
Greenhouse Gas Emissions Estimation Methodologies for Biogenic Emissions From Selected Source Categories: Solid Waste Disposal Wastewater Treatment Ethanol Fermentation
,” U.S. Environmental Protection Agency, Washington, DC, Technical Report No. EP-D-06-118.
83.
Robertson
,
E. P.
,
2007
, “
Analysis of CO2 Separation From Flue Gas, Pipeline Transportation, and Sequestration in Coal
,” Idaho National Laboratory, Idaho Falls, ID, Technical Report No. INL/EXT-08-13816.
84.
Leu
,
S.-Y.
,
Libra
,
J. A.
, and
Stenstrom
,
M. K.
,
2010
, “
Monitoring Off-Gas O2/CO2 to Predict Nitrification Performance in Activated Sludge Processes
,”
Water Res.
,
44
(
11
), pp.
3434
3444
.
85.
Pelaez
,
M.
,
Nolan
,
N. T.
,
Pillai
,
S. C.
,
Seery
,
M. K.
,
Falaras
,
P.
,
Kontos
,
A. G.
,
Dunlop
,
P. S.
,
Hamilton
,
J. W.
,
Byrne
,
J.
,
O'Shea
,
K.
,
Entezari
,
M. H.
, and
Dionysiou
,
D. D.
,
2012
, “
A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications
,”
Appl. Catal., B
,
125
, pp.
331
349
.
86.
Lazar
,
M.
,
Varghese
,
S.
, and
Nair
,
S.
,
2012
, “
Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates
,”
Catalysts
,
2
(
4
), pp.
572
601
.
87.
Co-LaN, 2013, “The CAPE-OPEN Laboratories Network (CO-LaN)
,”
2013
, Co-LaN Laboratories Network, Paris, http://www.colan.org/
88.
Bussche
,
K. V.
, and
Froment
,
G.
,
1996
, “
A Steady-State Kinetic Model for Methanol Synthesis and the Water Gas Shift Reaction on a Commercial Cu/ZnO/Al2O3Catalyst
,”
J. Catal.
,
161
(
1
), pp.
1
10
.
89.
Askgaard
,
T. S.
,
Norskov
,
J. K.
,
Ovesen
,
C. V.
, and
Stoltze
,
P.
,
1995
, “
A Kinetic Model of Methanol Synthesis
,”
J. Catal.
,
156
(
2
), pp.
229
242
.
90.
Skrzypek
,
J.
,
Lachowska
,
M.
, and
Moroz
,
H.
,
1991
, “
Kinetics of Methanol Synthesis Over Commercial Copper/Zinc Oxide/Alumina Catalysts
,”
Chem. Eng. Sci.
,
46
(
11
), pp.
2809
2813
.
91.
Lovik
,
I.
,
2001
, “
Modelling, Estimation and Optimization of the Methanol Synthesis With Catalyst Deactivation
,” Ph.D. thesis, Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
92.
van Baten
,
J.
, and
Baur
,
R.
,
2011
, “Cape Open to Cape Open Simulator Environment (COCO),” accessed Feb. 10, 2015, www.cocosimulator.org
93.
Chauvel
,
A.
, and
Lefebvre
,
G.
,
1989
,
Petrochemical Processes: Synthesis Gas Derivatives and Major Hydrocarbons
,
Institute Francais du Petrol Publications
,
Paris
.
94.
LeBlanc
,
J.
,
Schneider
,
R. V.
, III
,
Strait
,
R. B.
,
1994
, “
Production of Methanol
,”
Methanol Production and Use Chemical Industries
, Vol. 57, W.-H. Cheng and H. H. Kung, eds., Marcel Dekker, Inc, New York.
95.
Kung
,
H. H.
,
1992
, “
Deactivation of Methanol Synthesis Catalysts-A Review
,”
Catal. Today
,
11
(
4
), pp.
443
453
.
96.
Stolaroff
,
J. K.
,
Keith
,
D. W.
, and
Lowry
,
G. V.
,
2008
, “
Carbon Dioxide Capture From Atmospheric Air Using Sodium Hydroxide Spray
,”
Environ. Sci. Technol.
,
42
(
8
), pp.
2728
2735
.
97.
Zeman
,
F.
,
2007
, “
Energy and Material Balance of CO2 Capture From Ambient Air
,”
Environ. Sci. Technol.
,
41
(
21
), pp.
7558
7563
.
98.
Wang
,
T.
,
Lackner
,
K. S.
, and
Wright
,
A.
,
2011
, “
Moisture Swing Sorbent for Carbon Dioxide Capture From Ambient Air
,”
Environ. Sci. Technol.
,
45
(
15
), pp.
6670
6675
.
99.
Cengel
,
Y.
, and
Boles
,
M. A.
,
2006
,
Thermodynamics: An Engineering Approach, SI Version
,
5th ed.
,
McGraw-Hill Education
, Boston.
100.
Lackner
,
K. S.
,
Dahlgren
,
E.
,
Graves
,
C.
,
Meinrenken
,
C.
, and
Socci
,
T.
,
2010
, “
Closing the Carbon Cycle: Liquid Fuels From Air, Water and Sunshine
,” Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, New York.
101.
Lackner
,
K.
,
2009
, “
Capture of Carbon Dioxide From Ambient Air
,”
Eur. Phys. J. Spec. Top.
,
176
(
1
), pp.
93
106
.
102.
Ivy
,
J.
,
2004
, “
Summary of Electrolytic Hydrogen Production: Milestone Completion
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/MP-560-36734.
You do not currently have access to this content.