A high-temperature pressurized-air solar receiver, designed for driving a Brayton cycle, consists of a cylindrical SiC cavity and a concentric annular reticulated porous ceramic (RPC) foam enclosed by a steel pressure vessel. Concentrated solar energy is absorbed by the cavity and transferred to the pressurized air flowing across the RPC by combined conduction, convection, and radiation. The governing mass, momentum, and energy conservation equations are numerically solved by coupled Monte Carlo (MC) and finite volume (FV) techniques. Model validation was accomplished with experimental data obtained with a 50 kWth modular solar receiver prototype. The model is applied to elucidate the major heat loss mechanisms and to study the impact on the solar receiver performance caused by changes in process conditions, material properties, and geometry. For an outlet air temperature range 700–1000 °C and pressure range 4–15 bar, the thermal efficiency—defined as the ratio of the enthalpy change of the air flow divided by the solar radiative power input through the aperture—exceeds 63% and can be further improved via geometry optimization. Reradiation is the dominant heat loss.

References

References
1.
Ávila-Marín
,
A. L.
,
2011
, “
Volumetric Receivers in Solar Thermal Power Plants With Central Receiver System Technology: A Review
,”
Sol. Energy
,
85
(
5
), pp.
891
910
.
2.
Pritzkow
,
W. E. C.
,
1991
, “
Pressure Loaded Volumetric Ceramic Receiver
,”
Sol. Energy Mater.
,
24
(
1–4
), pp.
498
507
.
3.
Kribus
,
A.
,
Doron
,
P.
,
Rubin
,
R.
,
Reuven
,
R.
,
Taragan
,
E.
,
Duchan
,
S.
, and
Karni
,
J.
,
2001
, “
Performance of the Directly-Irradiated Annular Pressurized Receiver (DIAPR) Operating at 20 Bar and 1200 °C
,”
ASME J. Sol. Energy Eng.
,
123
(
1
), pp.
10
17
.
4.
Buck
,
R.
,
Bräuning
,
T.
,
Denk
,
T.
,
Pfänder
,
M.
,
Schwarzbözl
,
P.
, and
Tellez
,
F.
,
2002
, “
Solar-Hybrid Gas Turbine-Based Power Tower Systems (REFOS)
,”
ASME J. Sol. Energy Eng.
,
124
(
1
), pp.
2
9
.
5.
Karni
,
J.
,
Kribus
,
A.
,
Ostraich
,
B.
, and
Kochavi
,
E.
,
1998
, “
A High-Pressure Window for Volumetric Solar Receivers
,”
ASME J. Sol. Energy Eng.
,
120
(
1
), pp.
101
107
.
6.
Röger
,
M.
,
Pfänder
,
M.
, and
Buck
,
R.
,
2006
, “
Multiple Air-Jet Window Cooling for High-Temperature Pressurized Volumetric Receivers: Testing, Evaluation, and Modeling
,”
ASME J. Sol. Energy Eng.
,
128
(
3
), pp.
265
274
.
7.
Hischier
,
I.
,
Hess
,
D.
,
Lipiński
,
W.
,
Modest
,
M.
, and
Steinfeld
,
A.
,
2009
, “
Heat Transfer Analysis of a Novel Pressurized Air Receiver for Concentrated Solar Power Via Combined Cycles
,”
J. Therm. Sci. Eng. Appl.
,
1
(
4
), p.
41002
.
8.
Hischier
,
I.
,
Leumann
,
P.
, and
Steinfeld
,
A.
,
2012
, “
Experimental and Numerical Analyses of a Pressurized Air Receiver for Solar-Driven Gas Turbines
,”
ASME J. Sol. Energy Eng.
,
134
(
2
), p.
21003
.
9.
Hischier
,
I.
,
Poživil
,
P.
, and
Steinfeld
,
A.
,
2012
, “
A Modular Ceramic Cavity-Receiver for High-Temperature High-Concentration Solar Applications
,”
ASME J. Sol. Energy Eng.
,
134
(
1
), p.
11004
.
10.
Poživil
,
P.
,
Aga
,
V.
,
Zagorskiy
,
A.
, and
Steinfeld
,
A.
,
2014
, “
A Pressurized Air Receiver for Solar-Driven Gas Turbines
,”
Energy Procedia
,
49
, pp.
498
503
.
11.
Poživil
,
P.
,
Ettlin
,
N.
,
Stucker
,
F.
, and
Steinfeld
,
A.
,
2015
, “
Modular Design and Experimental Testing of a 50 kWth Pressurized-Air Solar Receiver for Gas Turbines
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
31002
.
12.
Schmitz
,
M.
,
Schwarzbözl
,
P.
,
Buck
,
R.
, and
Pitz-Paal
,
R.
,
2006
, “
Assessment of the Potential Improvement Due to Multiple Apertures in Central Receiver Systems With Secondary Concentrators
,”
Sol. Energy
,
80
(
1
), pp.
111
120
.
13.
Hischier
,
I.
,
Poživil
,
P.
, and
Steinfeld
,
A.
,
2015
, “
Optical and Thermal Analysis of a Pressurized-Air Receiver Cluster for a 50 MWe Solar Power Tower
,”
ASME J. Sol. Energy Eng.
,
137
(
6
), p.
061002
.
14.
Petrasch
,
J.
,
2010
, “
A Free and Open Source Monte Carlo Ray Tracing Program for Concentrating Solar Energy Research
,”
ASME
Paper No. ES2010-90206.
15.
ANSYS(R) Academic Teaching Advanced
, Release 15.0.
16.
Haussener
,
S.
,
Coray
,
P.
,
Lipiński
,
W.
,
Wyss
,
P.
, and
Steinfeld
,
A.
,
2010
, “
Tomography-Based Heat and Mass Transfer Characterization of Reticulate Porous Ceramics for High-Temperature Processing
,”
ASME J. Heat Transfer
,
132
(
2
), p.
23305
.
17.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
,
Springer
,
New York
.
18.
Boyce
,
M. P.
,
2012
,
Gas Turbine Engineering Handbook
,
Gulf Professional Publishing
,
Boston, MA
.
19.
Cumpsty
,
N. A.
,
2004
,
Compressor Aerodynamics
,
Addison-Wesley Longman
,
Malabar, FL
.
20.
Haldenwanger, 2013
, “
Halsic R/RX/I/S
,” Morgan Advanced Materials Haldenwanger GmbH, Waldkraiburg, Germany, http://haldenwanger.com
21.
Keenan
,
J. H.
,
Kaye
,
J.
, and
Caho
,
J.
,
1985
,
Gas Tables
,
Wiley
,
New York
.
You do not currently have access to this content.