Intrinsic and extrinsic nature of the luminescence of pure and Eu3+ and Tb3+ rare-earth ions activated mesoporous silica has been investigated by spectroscopic methods. Increasing the Eu3+ impurity concentration from 0.01 mg to 7 mg, results in an increase of the impurity particles radiation in the luminescent mesoporous colloidal silica (LMCS) matrix by several times. With an increase in the concentration of Tb3+ from 0.01 mg to 3 mg, impurity luminescence intensity increases several times while the intrinsic luminescence intensity maximum at 400 and 460 nm is decreasing. Based on the experimental evidence, it is suggested that the energy of the own electronic matrix excitation is transferred by emitters, i.e., impurities of Eu3+ and Tb3+ ions. Also, it is assumed that the emission band at 610 nm in an LMCS—Eu3+ and emission band at 543 nm in the LMCS—Tb3+ is attributed to the intracenter transitions within the Eu3+ and Tb3+ ions.

References

References
1.
Reichman
,
J.
,
1980
, “
The Current‐Voltage Characteristics of Semiconductor‐Electrolyte Junction Photovoltaic Cells
,”
Appl. Phys. Lett.
,
36
(
7
), pp.
574
577
.
2.
Güttler
,
G.
, and
Queisser
,
H. J.
,
1970
, “
Impurity Photovoltaic Effect in Silicon
,”
Energy Convers.
,
10
(
2
), pp.
51
55
.
3.
Bernd
,
R.
, and
Herbst
,
A. H.
,
1968
, “
Photovoltaic Cell and Solar Cell Panel
,” U.S. Patent No. US3411952 A.
4.
Wolf
,
M.
,
1960
, “
Limitations and Possibilities for Improvement of Photovoltaic Solar Energy Converters: Part I: Considerations for Earth's Surface Operation
,”
Proc. IRE
,
48
(
7
), pp.
1246
1263
.
5.
Mattox
,
D. M.
,
1976
, “
Application of Thin Films to Solar Energy Utilization
,”
J. Vac. Sci. Technol.
,
13
(
1
), pp.
127
134
.
6.
Kamyshny
,
A.
,
Zakharov
,
V. N.
,
Zakharov
,
M. A.
,
Yatsenko
,
A. V.
,
Savilov
,
S. V.
,
Aslanov
,
L. A.
, and
Magdassi
,
S.
,
2011
, “
Photoluminescent Silicon Nanocrystals Stabilized by Ionic Liquid
,”
J. Nanopart. Res.
,
13
(
5
), pp.
1971
1978
.
7.
Brites
,
C. D. S.
,
Freitas
,
V. T.
,
Ferreira
,
R. A. S.
,
Millán
,
A.
,
Palacio
,
F.
, and
Carlos
,
L. D.
,
2012
, “
Metal-Free Highly Luminescent Silica Nanoparticles
,”
Langmuir
,
28
(
21
), pp.
8190
8196
.
8.
Jin
,
Y.
,
Lohstreter
,
S.
,
Pierce
,
D. T.
,
Parisien
,
J.
,
Wu
,
M.
,
Hall
,
C.
, and
Zhao
,
J. X.
,
2008
, “
Silica Nanoparticles With Continuously Tunable Sizes: Synthesis and Size Effects on Cellular Contrast Imaging
,”
Chem. Mater.
,
20
(
13
), pp.
4411
4419
.
9.
Stupca
,
M.
,
Alsalhi
,
M.
,
Al Saud
,
T.
,
Almuhanna
,
A.
, and
Nayfeh
,
M. H.
,
2007
, “
Enhancement of Polycrystalline Silicon Solar Cells Using Ultra Thin Films of Silicon Nanoparticle
,”
Appl. Phys. Lett.
,
91
(
6
), p.
063107
.
10.
Naufeh
,
M. H.
, and
Mitas
,
L.
,
2008
, “
Silicon Nanoparticles: New Photonic and Electronic Materials at the Transition Between Solid and Molecule
,”
Nanosilicon
, V. Kumar, ed., Elsevier, Waltham, MA, pp.
1
78
.
11.
Descalzo
,
A. B.
,
Rurack
,
K.
,
Weisshoff
,
H.
,
Martinez-Manez
,
R.
,
Marcos
,
M. D.
,
Amopos
,
P.
,
Hoffmann
,
K.
, and
Soto
,
J.
,
2005
, “
Rational Design of a Chromo- and Fluorogenic Hybrid Chemosensor Material for the Detection of Long-Chain Carboxylates
,”
J. Am. Chem. Soc.
,
127
(
1
), pp.
184
200
.
12.
Keeling-Tucker
,
T.
, and
Brennan
,
J. D.
,
2001
, “
Fluorescent Probes as Reporters on the Local Structure and Dynamics in Sol−Gel-Derived Nanocomposite Materials
,”
Chem. Mater.
,
13
(
10
), pp.
3331
3350
.
13.
Wang
,
L.
,
Estévez
,
M. C.
,
O'Donoghue
,
M.
, and
Tan
,
W.
,
2008
, “
Fluorophore-Free Luminescent Organosilica Nanoparticles
,”
Langmuir
,
24
(
5
), pp.
1635
1639
.
14.
Zhanbotin
,
A.
,
Soriano
,
R. B.
,
Ikonen
,
A. K.
,
Nurakhmetov
,
T. N.
, and
Schmedake
,
A.
,
2011
, “
Luminescent Mesoporous Colloidal Silica: A Nonporous Substrate for Photosensitization of Lanthanide Ions
,”
Mater. Lett.
,
65
(
1
), pp.
10
12
.
You do not currently have access to this content.