Concentrated solar power using supercritical carbon dioxide (S-CO2) Brayton cycles offers advantages of similar or higher overall thermal efficiencies than conventional Rankine cycles using superheated or supercritical steam. The high efficiency and compactness of S-CO2, as compared with steam Rankine cycles operating at the same temperature, make this cycle attractive for solar central receiver applications. In this paper, S-CO2 Brayton cycle is integrated with a solar central receiver that provides heat input to the power cycle. Three configurations were analyzed: simple, recompression (RC), and recompression with main intercooling (MC). The effect of pressure drop in heat exchangers and solar receiver and solar receiver surface temperature on the thermal and exergetic performance of the CO2 Brayton cycle with and without reheat condition was studied. Energy, exergy, and mass balance were carried out for each component and the cycle first law and exergy efficiencies were calculated. In order to obtain optimal operating conditions, optimum pressure ratios were obtained by maximizing the cycle thermal efficiency under different pressure drops and solar receiver temperature conditions. Optimization of the cycle first law efficiency was carried out in python 2.7 by using sequential least squares programing (SLSQP). The results showed that under low pressure drops, adding reheat to the S-CO2 Brayton cycle has a favorable effect on the thermal and exergy efficiencies. Increasing pressure drop reduces the gap between efficiencies for reheat and no reheat configuration, and for pressure drop factors in the solar receiver above 2.5%, reheat has a negligible or detrimental effect on thermal and exergy performance of S-CO2 Brayton cycles. Additionally, the results showed that the overall exergy efficiency has a bell shape, reaching a maximum value between 18.3% and 25.1% at turbine inlet temperatures in the range of 666–827 °C for different configurations. This maximum value is highly dependent on the solar receiver surface temperature, the thermal performance of the solar receiver, and the solar field efficiency. As the solar receiver surface temperature increases, more exergy destruction associated with heat transfer losses to the environment takes place in the solar receiver and therefore the overall exergy efficiency decreases. Recompression with main intercooling (MC) showed the best thermal (ηI,cycle > 47% at Tin,turbine > 700 °C) and exergy performance followed by RC configuration.

References

References
1.
Turchi
,
C. S.
,
Ma
,
Z.
, and
Dyreby
,
J.
,
2012
, “
Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems
,”
ASME
Paper No. GT2012-68932.
2.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
.
3.
Wright
,
S. A.
,
Radel
,
R. F.
, and
Fuller
,
R.
,
2010
, “
Engineering Performance of Supercritical CO2 Brayton Cycles
,”
International Congress on Advances in Nuclear Power Plants 2010 (ICAPP 2010)
, San Diego, CA, June 13–17, Vol.
1
, pp.
400
408
.
4.
Feher
,
E. G.
,
1968
, “
The Supercritical Thermodynamic Power Cycle
,”
Energy Convers.
,
8
(
2
), pp.
85
90
.
5.
Dostál
,
V.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
6.
Kulhánek
,
M.
, and
Dostál
,
V.
,
2011
, “
Thermodynamic Analysis and Comparison of Supercritical Carbon Dioxide Cycles
,” Supercritical CO2 Power Cycle Symposium, Boulder, CO, May 24–25.
7.
Dostál
,
V.
,
Hejzlar
,
P.
, and
Driscoll
,
M. J.
,
2006
, “
High-Performance Supercritical Carbon Dioxide Cycle for Next-Generation Nuclear Reactors
,”
Nucl. Technol.
,
154
(
3
), pp.
265
282
.
8.
Dostál
,
V.
,
Hejzlar
,
P.
, and
Driscoll
,
M. J.
,
2006
, “
The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles
,”
Nucl. Technol.
,
154
(
3
), pp.
283
301
.
9.
Hejzlar
,
P.
,
Dostal
,
V.
, and
Driscoll
,
M. J.
,
2006
, “
A Supercritical CO2 Cycle: A Promising Power Conversion System for Generation IV Reactors
,”
International Congress on Advances in Nuclear Power Plants (ICAPP’06)
, Reno, NV, June 4–8, Vol.
2006
, pp.
722
731
.
10.
Bae
,
S. J.
,
Lee
,
J.
,
Ahn
,
Y.
, and
Lee
,
J. I.
,
2015
, “
Preliminary Studies of Compact Brayton Cycle Performance for Small Modular High Temperature Gas-Cooled Reactor System
,”
Ann. Nucl. Energy
,
75
, pp.
11
19
.
11.
Harvego
,
E. A.
, and
McKellar
,
M. G.
,
2011
, “
Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications
,”
ASME
Paper No. IMECE2011-63073.
12.
Hejzlar
,
P.
,
Dostal
,
V.
,
Driscoll
,
M. J.
,
Dumaz
,
P.
,
Poullennec
,
G.
, and
Alpy
,
N.
,
2005
, “
Assessment of Gas Cooled Fast Reactor With Indirect Supercritical CO2 Cycle
,”
American Nuclear Society—International Congress on Advances in Nuclear Power Plants 2005 (ICAPP’05)
, Seoul, Korea, May 15–19, Vol.
1
, pp.
436
446
.
13.
Moisseytsev
,
A.
, and
Sienicki
,
J. J.
,
2009
, “
Investigation of Alternative Layouts for the Supercritical Carbon Dioxide Brayton Cycle for a Sodium-Cooled Fast Reactor
,”
Nucl. Eng. Des.
,
239
(
7
), pp.
1362
1371
.
14.
Garg
,
P.
,
Kumar
,
P.
, and
Srinivasan
,
K.
,
2013
, “
Supercritical Carbon Dioxide Brayton Cycle for Concentrated Solar Power
,”
J. Supercrit. Fluids
,
76
, pp.
54
60
.
15.
Dunham
,
M. T.
, and
Iverson
,
B. D.
,
2014
, “
High-Efficiency Thermodynamic Power Cycles for Concentrated Solar Power Systems
,”
Renewable Sustainable Energy Rev.
,
30
, pp.
758
770
.
16.
Neises
,
T.
, and
Turchi
,
C.
,
2014
, “
A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations With an Emphasis on CSP Applications
,”
Energy Procedia
,
49
, pp.
1187
1196
.
17.
Ho
,
C. K.
,
Conboy
,
T.
,
Ortega
,
J.
,
Afrin
,
S.
,
Gray
,
A.
,
Christian
,
J. M.
,
Bandyopadhyay
,
S.
,
Kedare
,
S. B.
,
Singh
,
S.
, and
Wani
,
P.
,
2014
, “
High-Temperature Receiver Designs for Supercritical CO2 Closed-Loop Brayton Cycles
,”
ASME
Paper No. ES2014-6328.
18.
Olivares
,
R. I.
,
Stein
,
W.
, and
Marvig
,
P.
,
2013
, “
Thermogravimetric Study of Oxidation-Resistant Alloys for High-Temperature Solar Receivers
,”
JOM
,
65
(
12
), pp.
1660
1669
.
19.
Fork
,
D. K.
,
Fitch
,
J.
,
Ziaei
,
S.
, and
Jetter
,
R. I.
,
2012
, “
Life Estimation of Pressurized-Air Solar-Thermal Receiver Tubes
,”
ASME J. Sol. Energy Eng.
,
134
(
4
), p.
041016
.
20.
Craig
,
B. D.
, and
Anderson
,
D. S.
, eds.
1994
,
Handbook of Corrosion Data
,
ASM International
,
Materials Park, OH
.
21.
Singh
,
R.
,
Kearney
,
M. P.
, and
Manzie
,
C.
,
2013
, “
Extremum-Seeking Control of a Supercritical Carbon-Dioxide Closed Brayton Cycle in a Direct-Heated Solar Thermal Power Plant
,”
Energy
,
60
, pp.
380
387
.
22.
Singh
,
R.
,
Miller
,
S. A.
,
Rowlands
,
A. S.
, and
Jacobs
,
P. A.
,
2013
, “
Dynamic Characteristics of a Direct-Heated Supercritical Carbon-Dioxide Brayton Cycle in a Solar Thermal Power Plant
,”
Energy
,
50
, pp.
194
204
.
23.
Moisseytsev
,
A.
, and
Sienicki
,
J. J.
,
2008
, “
Transient Accident Analysis of a Supercritical Carbon Dioxide Brayton Cycle Energy Converter Coupled to an Autonomous Lead-Cooled Fast Reactor
,”
Nucl. Eng. Des.
,
238
(
8
), pp.
2094
2105
.
24.
Moisseytsev
,
A.
, and
Sienicki
,
J. J.
,
2008
, “
Controllability of the Supercritical Carbon Dioxide Brayton Cycle Near the Critical Point
,”
International Conference on Advances in Nuclear Power Plants (ICAPP 2008)
, Anaheim, CA, June 8–12, Vol.
2
, pp.
799
809
.
25.
Moisseytsev
,
A.
, and
Sienicki
,
J.
,
2011
, “
Investigation of Plant Control Strategies for the Supercritical CO2 Brayton Cycle for a Sodium-Cooled Fast Reactor Using the Plant Dynamics Code
,” Argonne National Laboratory, Lemont, IL, Technical Report No. ANL-GENIV-147.
26.
Moisseytsev
,
A.
, and
Sienicki
,
J. J.
,
2012
, “
Dynamic Simulation and Control of the S-CO2 Cycle: From Full Power to Decay Heat Removal
,” Advances in Thermal Hydraulics (ATH '12), San Diego, CA, Nov. 11–15, pp.
52
60
.
27.
Conboy
,
T.
,
Pasch
,
J.
, and
Fleming
,
D.
,
2013
, “
Control of a Supercritical CO2 Recompression Brayton Cycle Demonstration Loop
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
111701
.
28.
Carstens
,
N. A.
,
Vilim
,
R. B.
,
Hejzlar
,
P.
, and
Driscoll
,
M. J.
,
2008
, “
Dynamic Modeling of the S-CO2 Recompression Cycle
,”
International Conference on Advances in Nuclear Power Plants (ICAPP 2008)
, Anaheim, CA, June 8–12, Vol.
2
, pp.
784
798
.
29.
Dyreby
,
J. J.
,
Klein
,
S. A.
,
Nellis
,
G. F.
, and
Reindl
,
D. T.
,
2013
, “
Modeling Off-Design and Part-Load Performance of Supercritical Carbon Dioxide Power Cycles
,”
ASME
Paper No. GT2013-95824.
30.
Wright
,
S. A.
,
Fuller
,
R.
,
Noall
,
J.
,
Radel
,
R.
,
Vernon
,
M. E.
, and
Pickard
,
P. S.
,
2008
, “
Supercritical CO2 Brayton Cycle Compression and Control Near the Critical Point
,”
International Conference on Advances in Nuclear Power Plants (ICAPP 2008)
, Anaheim, CA, June 8–12, Vol.
2
, pp.
810
819
.
31.
Wright
,
S. A.
, and
Pickard
,
P. S.
,
2009
, “
Supercritical CO2 Test Loop Operation and First Test Results
,”
International Congress on Advances in Nuclear Power Plants (ICAPP 2009)
, Tokyo, May 10–14, Vol.
1
, pp.
351
360
.
32.
Wright
,
S. A.
,
Pickard
,
P. S.
,
Vernon
,
M. E.
,
Radel
,
R. F.
, and
Fuller
,
R.
,
2009
, “
Description and Test Results From a Supercritical CO2 Brayton Cycle Development Program
,”
AIAA
Paper No. 2009-4607.
33.
Garg
,
P.
,
Kumar
,
P.
,
Dutta
,
P.
,
Conboy
,
T.
, and
Ho
,
C.
,
2014
, “
Design of an Experimental Test Facility for Supercritical CO2 Brayton Cycle
,”
ASME
Paper No. ES2014-6549.
34.
Conboy
,
T.
,
Wright
,
S.
,
Pasch
,
J.
,
Fleming
,
D.
,
Rochau
,
G.
, and
Fuller
,
R.
,
2012
, “
Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
111703
.
35.
Lee
,
J.
,
Lee
,
J. I.
,
Ahn
,
Y.
, and
Yoon
,
H.
,
2012
, “
Design Methodology of Supercritical CO2 Brayton Cycle Turbomachineries
,”
ASME
Paper No. GT2012-68933.
36.
Pecnik
,
R.
,
Rinaldi
,
E.
, and
Colonna
,
P.
,
2012
, “
Computational Fluid Dynamics of a Radial Compressor Operating With Supercritical CO2
,”
ASME
Paper No. GT2012-69640.
37.
Kim
,
S. G.
,
Lee
,
J.
,
Ahn
,
Y.
,
Lee
,
J. I.
,
Addad
,
Y.
, and
Ko
,
B.
,
2014
, “
CFD Investigation of a Centrifugal Compressor Derived From Pump Technology for Supercritical Carbon Dioxide as a Working Fluid
,”
J. Supercrit. Fluids
,
86
, pp.
160
171
.
38.
Clementoni
,
E. M.
,
Cox
,
T. L.
, and
Sprague
,
C. P.
,
2014
, “
Startup and Operation of a Supercritical Carbon Dioxide Brayton Cycle
,”
ASME J. Eng. Gas Turbines Power
,
136
(
7
), p.
071701
.
39.
Kimball
,
K. J.
, and
Clementoni
,
E. M.
,
2012
, “
Supercritical Carbon Dioxide Brayton Power Cycle Development Overview
,”
ASME
Paper No. GT2012-68204.
40.
Pasch
,
J.
,
Conboy
,
T.
,
Fleming
,
D.
,
Carlson
,
M.
, and
Rochau
,
G.
,
2014
, “
Steady State Supercritical Carbon Dioxide Recompression Closed Brayton Cycle Operating Point Comparison With Predictions
,”
ASME
Paper No. GT2014-25777.
41.
Sarkar
,
J.
,
2009
, “
Second Law Analysis of Supercritical CO2 Recompression Brayton Cycle
,”
Energy
,
34
(
9
), pp.
1172
1178
.
42.
Kim
,
Y.
,
Kim
,
C.
, and
Favrat
,
D.
,
2012
, “
Transcritical or Supercritical CO2 Cycles Using Both Low- and High-Temperature Heat Sources
,”
Energy
,
43
(
1
), pp.
402
415
.
43.
Akbari
,
A. D.
, and
Mahmoudi
,
S. M.
,
2014
, “
Thermoeconomic Analysis and Optimization of the Combined Supercritical CO2 (Carbon Dioxide) Recompression Brayton/Organic Rankine Cycle
,”
Energy
,
78
, pp.
501
512
.
44.
Dincer
,
I.
, and
Ratlamwala
,
T.
,
2013
, “
Importance of Exergy for Analysis, Improvement, Design, and Assessment
,”
Wiley Interdiscip. Rev.: Energy Environ.
,
2
(
3
), pp.
335
349
.
45.
Kao
,
S. P.
,
Gibbs
,
J.
, and
Hejzlar
,
P.
,
2009
, “
Dynamic Simulation and Control of a Supercritical CO2 Power Conversion System for Small Light Water Reactor Applications
,” Supercritical CO2 Power Cycle Symposium, Troy, NY, Apr. 29–30.
46.
Hoang
,
H. T.
,
Corcoran
,
M. R.
, and
Wuthrich
,
J. W.
,
2009
, “
Thermodynamic Study of a Supercritical CO2 Brayton Cycle Concept
,” Supercritical CO2 Power Cycle Symposium, Troy, NY, Apr. 29–30.
47.
Utamura
,
M.
,
2010
, “
Thermodynamic Analysis of Part-Flow Cycle Supercritical CO2 Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
132
(
11
), p.
111701
.
48.
Lutz
,
M.
,
2006
,
Programming python
,
O'Reilly Media
,
Sebastopol, CA
.
49.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2013
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-refprop, Version 9.1
,” National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, MD.
50.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.
51.
Kraft
,
D.
,
1988
, “
A Software Package for Sequential Quadratic Programming
,” DLR German Aerospace Center Institute for Flight Mechanics, Koln, Germany, Technical Report No. DFVLR-FB 88-28.
52.
Moran
,
M. J.
, and
Shapiro
,
H. N.
,
2004
,
Fundamentals of Engineering Thermodynamics
,
5 ed.
,
Wiley
,
West Sussex, UK
.
53.
Petela
,
R.
,
2003
, “
Exergy of Undiluted Thermal Radiation
,”
Sol. Energy
,
74
(
6
), pp.
469
488
.
54.
Parrott
,
J.
,
1978
, “
Theoretical Upper Limit to the Conversion Efficiency of Solar Energy
,”
Sol. Energy
,
21
(
3
), pp.
227
229
.
55.
Ho
,
C. K.
, and
Iverson
,
B. D.
,
2014
, “
Review of High-Temperature Central Receiver Designs for Concentrating Solar Power
,”
Renewable Sustainable Energy Rev.
,
29
, pp.
835
846
.
56.
Pye
,
J.
,
Zheng
,
M.
,
Asselineau
,
C. A.
, and
Coventry
,
J.
,
2014
, “
An Exergy Analysis of Tubular Solar-Thermal Receivers With Different Working Fluids
,”
International Conference on Concentrating Solar Power and Chemical Energy Systems
(SolarPACES 2014), Beijing, Sept. 16–19.
57.
U.S. DOE
,
2006
, “
EnergyPlus Energy Simulation Software
(Southwest Pacific WMO Region 5: Australia),”
U.S. Department of Energy
,
Washington, DC
.
58.
Wright
,
S. A.
,
Conboy
,
T. M.
,
Carlson
,
M.
, and
Rochau
,
G. E.
,
2012
, “
High Temperature Split-Flow Reactor Compression Brayton Cycle Initial Test Results
,” Sandia National Laboratories, Livermore, CA, Technical Report No. SAND2012-6426.
59.
Wark
,
K.
,
1995
,
Advanced Thermodynamics for Engineers
,
McGraw-Hill
,
New York
.
60.
NREL
,
2009
, “
Solar Advisor Model CSP Reference Manual for Version 3.0
,” National Renewable Energy Laboratory, Golden, CO.
61.
Serth
,
R.
,
2007
,
Process Heat Transfer: Principles and Applications
,
Academic Press
,
Burlington, MA
.
62.
Kelly
,
B.
,
2006
, “
Nexant Parabolic Trough Solar Power Plant Systems Analysis, Task 2: Comparison of Wet and Dry Rankine Cycle Heat Rejection
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/SR-550-40163.
63.
Khivsara
,
S. D.
,
Das
,
R. N.
,
Thyagaraj
,
T. L.
,
Dhar
,
S.
,
Srinivasan
,
V.
, and
Dutta
,
P.
,
2014
, “
Development of a Ceramic Pressurized Volumetric Solar Receiver for Supercritical CO2 Brayton Cycle
,”
ASME
Paper No. ES2014-6482.
64.
Kelly
,
B. D.
,
2010
, “
Advanced Thermal Storage for Central Receivers With Supercritical Coolants
,” Abengoa Solar, Washington, DC, Technical Report No. DE-FG36-08GO18149.
65.
Viswanathan
,
R.
,
Coleman
,
K.
, and
Rao
,
U.
,
2006
, “
Materials for Ultra-Supercritical Coal-Fired Power Plant Boilers
,”
Int. J. Pressure Vessels Piping
,
83
(
11
), pp.
778
783
.
66.
Falcone
,
P. K.
,
1986
, “
A Handbook for Solar Central Receiver Design
,” Sandia National Laboratories, Livermore, CA, Technical Report No. SAND-86-8009.
You do not currently have access to this content.