The aerodynamic characteristics of wakes in complex terrain have a profound impact on the energy yield of wind farms and on the fatigue loads on wind turbines in the wind farm. In order to detail the spatial variations of the wind speed, wind direction, and turbulent kinetic energy (TKE) in the near-wake, comprehensive drone-based measurements at a multi-megawatt (MW) wind turbine that is located in complex terrain have been conducted. A short-time Fourier transform (STFT)-based analysis method is used to derive time-localized TKE along the drone's trajectory. In upstream and in the near-wake, the vertical profiles of wind speed, wind direction, and TKE are detailed. There is an increase in the TKE from upstream to downstream of the wind turbine, and whereas, the characteristic microscale length scales increase with increasing height above the ground upstream of the turbine, in the near-wake the microscale lengths are of constant, smaller magnitude. The first-ever measurements of the pressure field across a multi-MW wind turbines rotor plane and of the tip vortices in the near-wake are also reported. It is shown that the pitch between subsequent tip vortices, which are shed from the wind turbines blades, increases in the near-wake as the wake evolves. These details of the near-wake can have an important effect on the subsequent evolution of the wake and must be incorporated into the three-dimensional (3D) field wake models that are currently under intensive development.

References

1.
Global Wind Energy Council Report
,
2012
, http://www.gwec.net/publications/global-wind-report-2
2.
Sanderse
,
B.
,
2009
, “
Aerodynamics of Wind Turbine Wakes
,” Energy Research Center of the Netherlands, Report No. ECN-E-09-016.
3.
Kocer
,
G.
,
Mansour
,
M.
,
Chokani
,
N.
,
Abhari
,
R. S.
, and
Müller
,
M.
,
2011
, “
Full-Scale Wind Turbine Near-Wake Measurements Using an Instrumented Uninhabited Aerial Vehicle
,”
ASME J. Sol. Energy Eng.
,
133
(
4
), p.
041011
.
4.
Mansour
,
M.
,
Kocer
,
G.
,
Lenherr
,
C.
,
Chokani
,
N.
, and
Abhari
,
R. S.
,
2011
, “
Full Scale Wind Turbine Flow Field Measurements Using a 7-Sensor Fast Response Probe
,”
ASME J. Eng. Gas Turbines Power
,
133
(
8
), p.
081601
.
5.
Clive
,
P. J. M.
,
2008
, “
LIDAR and Resource Assessment for Wind Power Applications: The State of the Art
,”
Proc. SPIE
,
7111
, p.
711107
.
6.
Käsler
,
Y.
,
Rahm
,
S.
,
Simmet
,
R.
, and
Kühn
,
M.
,
2010
, “
Wake Measurements of a Multi-MW Wind Turbine With Coherent Long-Range Pulsed Doppler Wind Lidar
,”
J. Atmos. Oceanic Technol.
,
27
(
9
), pp.
1529
1532
.
7.
Bingöl
,
F.
,
Mann
,
J.
, and
Larsen
,
G. C.
,
2009
, “
Light Detection and Ranging Measurements of Wake Dynamics Part 1: One Dimensional Scanning
,”
Wind Energy
,
13
(
1
), pp.
51
61
.
8.
Trujillo
,
J. J.
,
Bingöl
,
F.
,
Larsen
,
G. C.
,
Mann
,
J.
, and
Kühn
,
M.
,
2011
, “
Light-Detection and Ranging Measurements of Wake Dynamics. Part II: Two-Dimensional Scanning
,”
Wind Energy
,
14
(
1
), pp.
61
75
.
9.
Ebert
,
P. R.
, and
Wood
,
D. H.
,
1997
, “
The Near Wake of a Model Horizontal-Axis Wind Turbine—I. Experimental Arrangements and Initial Results
,”
Renewable Energy
,
12
(
3
), pp.
225
243
.
10.
Haans
,
W.
,
Sant
,
T.
,
van Kuik
,
G.
, and
van Bussel
,
G.
,
2008
, “
HAWT Near-Wake Aerodynamics, Part I: Axial Flow Conditions
,”
Wind Energy
,
11
(
3
), pp.
245
264
.
11.
Whale
,
J.
,
Anderson
,
C. G.
,
Bareiss
,
R.
, and
Wagner
,
S.
,
2000
, “
An Experimental and Numerical Study of the Vortex Structure in the Wake of a Wind Turbine
,”
J. Eng. Ind. Aerodyn.
,
84
(
1
), pp.
1
21
.
12.
Vermeer
,
L.
,
Sørensen
,
J.
, and
Crespo
,
A.
,
2003
, “
Wind Turbine Wake Aerodynamics
,”
Prog. Aerosp. Sci.
,
39
(
6–7
), pp.
467
510
.
13.
Helmis
,
C. G.
,
Papadopoulos
,
K. H.
,
Asimakopoulos
,
D. N.
,
Papageorgas
,
P. G.
, and
Soilemes
,
A. T.
,
1995
, “
An Experimental Study of the Near-Wake Structure of a Wind Turbine Operating Over Complex Terrain
,”
J. Sol. Energy
,
54
(
6
), pp.
413
428
.
14.
Elliott
,
D. L.
, and
Barnard
,
J. C.
,
1990
, “
Observations of Wind Turbine Wakes and Surface Roughness Effects on Wind Flow Variability
,”
Sol. Energy
,
45
(
5
), pp.
265
283
.
15.
Papadopoulos
,
K. H.
,
Helmis
,
C. G.
,
Soilemes
,
A. T.
,
Papageorgas
,
P. G.
, and
Asimakopoulos
,
D. N.
,
1995
, “
Study of the Turbulent Characteristics of the Near-Wake Field of a Medium-Sized Wind Turbine Operating in High Wind Conditions
,”
Sol. Energy
,
55
(
1
), pp.
61
72
.
16.
Zambrano
,
T. G.
, and
Gyatt
,
G. W.
,
1983
, “
Wake Structure Measurements at the MOD-2 Cluster Test Facility at Goodnoe Hills, Washington
,”
IEE Proc.
,
130
(
9
), pp.
562
565
.
17.
Högström
,
U.
,
Asimakopoulos
,
D. N.
,
Kambezidis
,
H.
,
Helmis
,
C. G.
, and
Smedman
,
A.
,
1988
, “
A Field Study of the Wake Behind a 2 MW Wind Turbine
,”
Atmos. Environ.
,
22
(
4
), pp.
803
820
.
18.
Kambezidis
,
H. D.
,
Asimakopoulos
,
D. N.
, and
Helmis
,
C. G.
,
1990
, “
Wake Measurements Behind a Horizontal-Axis 50 kW Wind Turbine
,”
Sol. Wind Technol.
,
7
(
2–3
), pp.
177
184
.
19.
Rhyne
,
R. H.
, and
Steiner
,
R.
,
1964
, “
Power Spectral Measurement of Atmospheric Turbulence in Severe Storms and Cumulus Clouds
,” NASA Technical Note, NASA TN D-2469.
20.
Burns
,
A.
,
1964
, “
Power Spectra of Low level Atmospheric Turbulence Measured From an Aircraft
,” Aeronautical Research Council, C. P. No. 733.
21.
Lenschow
,
D. H.
, and
Sun
,
J.
,
2007
, “
The Spectral Composition of Fluxes and Variances Over Land and Sea Out to the Mesoscale
,”
Boundary Layer Meteorol.
,
125
(
1
), pp.
63
84
.
22.
Lovejoy
,
S.
,
Tuck
,
A. F.
,
Schertzer
,
D.
, and
Hovde
,
S. J.
,
2009
, “
Reinterpreting Aircraft Measurement in Anisotropic Scaling Turbulence
,”
Atmos. Chem. Phys.
,
9
(
14
), pp.
5007
5025
.
23.
Schlipf
,
D.
,
Trabucchi
,
D.
,
Bischoff
,
O.
,
Hofsäss
,
M.
,
Mann
,
J.
,
Mikkelsen
,
T.
,
Rettenmeier
,
A.
,
Trujillo
,
J. J.
, and
Kühn
,
M.
,
2010
, “
Testing of Frozen Turbulence Hypothesis for Wind Turbine Applications With a Scanning LIDAR System
,”
International Symposium for the Advancement of Boundary Layer Remote Sensing
,
Paris, France
.
24.
Giebel
,
G.
,
Schmidt Paulsen
,
U.
,
Bange
,
J.
,
la Cour-Harbo
,
A.
,
Reuder
,
J.
,
Mayer
,
S.
,
van der Kroonenberg
,
A.
, and
Mølgaard
,
J.
,
2012
, “
Autonomous Aerial Sensors for Wind Power Meteorology—A Pre-Project
,” Final Project Report, Risø-R-1798(EN).
25.
Wildmann
,
N.
,
Hofsäss
,
M.
,
Weimer
,
F.
,
Joos
,
A.
, and
Bange
,
J.
,
2014
, “
MASC—A Small Remotely Piloted Aircraft (RPA) for Wind Energy Research
,”
Adv. Sci. Res.
,
11
(
1
), pp.
55
61
.
26.
Jafari
,
S.
,
Chokani
,
N.
, and
Abhari
,
R. S.
,
2014
, “
Simulation of Wake Interactions in Wind Farms Using an Immersed Wind Turbine Model
,”
ASME J. Turbomach.
,
136
(
6
), p.
061018
.
27.
Kupferschmied
,
K.
,
Köppel
,
P.
,
Roduner
,
C.
, and
Gyarmathy
,
G.
,
2000
, “
On the Development and Application of the Fast-Response Aerodynamic Probe System in Turbomachines—Part 1: The Measurement System
,”
ASME J. Turbomach.
,
122
(
3
), pp.
505
516
.
28.
Mueller
,
M.
, and
Drouin
,
A.
,
2007
, “
Paparazzi—The Free Autopilot. Build Your Own UAV
,”
24th Chaos Communication Congress, Berliner Congress Center
, Dec. 27–30.
29.
Chao
,
H.
,
Coopmans
,
C.
,
Di
,
L.
, and
Chen
,
Y. Q.
,
2010
, “
A Comparative Evaluation of Low-Cost IMUs for Unmanned Autonomous Systems
,”
IEEE
2010 International Conference on Multisensor Fusion and Integration for Intelligent Systems, University of Utah
,
Salt Lake City, UT
, Sept. 5–7, pp.
211
216
.
30.
Behr
,
T.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2006
, “
A Probabilistic Uncertainty Evaluation Method for Turbomachinery Probe Measurements
,”
The XVIIIth Bi-Annual Symposium on Measuring Techniques in Transonic and Supersonic Flows in Cascades and Turbomachines
,
Thessaloniki, Greece
, pp.
1
21
.
31.
Norris
,
J. D.
, and
Chokani
,
N.
,
2001
, “
Identification of Nonlinear Interactions in Hypersonic Boundary Layers Using STFT
,”
AIAA
Paper No. 2001-0207.
32.
Jafari
,
S.
,
Chokani
,
N.
, and
Abhari
,
R. S.
,
2011
, “
An Immersed Boundary Method for Simulation of Wind Flow Over Complex Terrain
,”
ASME J. Sol. Energy Eng.
,
134
(
1
), p.
011006
.
33.
Subramanian
,
B.
,
Chokani
,
N.
, and
Abhari
,
R. S.
,
2012
, “
Full-Scale HAWT: Structure of Near-Wake Turbulence Measured With Instrumented UAV
,” Euromech Colloquium 528.
34.
Kocer
,
G.
,
Chokani
,
N.
, and
Abhari
,
R. S.
,
2012
, “
Wake Structure of a 2 MW Wind Turbine Measured Using an Instrumented UAV
,”
AIAA
Paper No. 2012-0231.
35.
Dubovikov
,
M. M.
, and
Tatarskii
,
V. I.
,
1987
, “
The Calculation of the Asymptotics of the Spectrum of Locally Isotropic Turbulence in the Viscous Range
,”
Zh. Eksp. Teor. Fiz.
,
93
, pp.
1992
2001
[English translation by the American Institute of Physics, Sov. Phys. JETP 66(6), 1136–1141 (1988)].
36.
Kaimal
,
J. C.
, and
Finnigan
,
J. J.
,
1994
,
Atmospheric Boundary Layer Flows—Their Structure and Measurement
,
Oxford University Press
,
New York
.
37.
Subramanian
,
B.
,
Chokani
,
N.
, and
Abhari
,
R. S.
,
2015
, “
Experimental Analysis of Wakes in a Utility Scale Wind Farm
,”
J. Wind Eng. Ind. Aerodyn.
,
138
(
2015
), pp.
61
68
.
38.
Wood
,
D. H.
,
1994
, “
Simple Equations for Helical Vortex Wakes
,”
J. Aircr.
,
31
(
4
), pp.
994
995
.
You do not currently have access to this content.