A concentrated solar power (CSP) plant typically has thermal energy storage (TES), which offers advantages of extended operation and power dispatch. Using dual-media, TES can be cost-effective because of the reduced use of heat transfer fluid (HTF), usually an expensive material. The focus of this paper is on the effect of a start-up period thermal storage strategy to the cumulative electrical energy output of a CSP plant. Two strategies—starting with a cold storage tank (referred to as “cold start”) and starting with a fully charged storage tank (referred to as “hot start”)—were investigated with regards to their effects on electrical energy production in the same period of operation. An enthalpy-based 1D transient model for energy storage and temperature variation in solid filler material and HTF was applied for both the sensible heat storage system (SHSS) and the latent heat storage system (LHSS). The analysis was conducted for a CSP plant with an electrical power output of 60 MWe. It was found that the cold start is beneficial for both the SHSS and LHSS systems due to the overall larger electrical energy output over the same number of days compared to that of the hot start. The results are expected to be helpful for planning the start-up operation of a CSP plant with a dual-media thermal storage system.

References

1.
Li
,
Y. Q.
,
He
,
Y. L.
,
Song
,
H. J.
,
Xu
,
C.
, and
Wang
,
W. W.
,
2013
, “
Numerical Analysis and Parameters Optimization of Shell-and-Tube Heat Storage Unit Using Three Phase Change Materials
,”
Renewable Energy
,
59
, pp.
92
99
.10.1016/j.renene.2013.03.022
2.
Liu
,
M.
,
Saman
,
W.
, and
Bruno
,
F.
,
2012
, “
Review on Storage Materials and Thermal Performance Enhancement Techniques for High Temperature Phase Change Thermal Storage Systems
,”
Renewable Sustainable Energy Rev.
,
16
(
4
), pp.
2118
2132
.10.1016/j.rser.2012.01.020
3.
Regin
,
A. F.
,
Solanki
,
S. C.
, and
Saini
,
J. S.
,
2008
, “
Heat Transfer Characteristics of Thermal Energy Storage System Using PCM Capsules: A Review
,”
Renewable Sustainable Energy Rev.
,
12
(
9
), pp.
2438
2458
.10.1016/j.rser.2007.06.009
4.
Müller-Steinhagen
,
H.
, and
Trieb
,
F.
,
2004
, “
Concentrating Solar Power: A Review of the Technology
,”
Ingenia Inform. QR Acad. Eng.
,
18
, pp.
43
50
.
5.
Py
,
X.
,
Azoumah
,
Y.
, and
Olives
,
R.
,
2013
, “
Concentrated Solar Power: Current Technologies, Major Innovative Issues and Applicability to West African Countries
,”
Renewable Sustainable Energy Rev.
,
18
, pp.
306
315
.10.1016/j.rser.2012.10.030
6.
Li
,
P. W.
,
Van Lew
,
J.
,
Karaki
,
W.
,
Chan
,
C. L.
,
Stephens
,
J.
, and
Wang
,
Q. W.
,
2011
, “
Generalized Charts of Energy Storage Effectiveness for Thermocline Heat Storage Tank Design and Calibration
,”
Sol. Energy
,
85
(
9
), pp.
2130
2143
.10.1016/j.solener.2011.05.022
7.
Nallusamy
,
N.
, and
Sampath
,
S.
,
2007
, “
Experimental Investigation on a Combined Sensible and Latent Heat Storage System Integrated With Constant/Varying (Solar) Heat Sources
,”
Renewable Energy
,
32
(
7
), pp.
1206
1227
.10.1016/j.renene.2006.04.015
8.
Verma
,
P.
, and
Singal
,
S. K.
,
2008
, “
Review of Mathematical Modeling on Latent Heat Thermal Energy Storage Systems Using Phase-Change Material
,”
Renewable Sustainable Energy Rev.
,
12
(
4
), pp.
999
1031
.10.1016/j.rser.2006.11.002
9.
Agyenim
,
F.
,
Hewitt
,
N.
,
Eames
,
P.
, and
Smyth
,
M.
,
2010
, “
A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS)
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
615
628
.10.1016/j.rser.2009.10.015
10.
Whiffen
,
T. R.
, and
Riffat
,
S. B.
,
2013
, “
A Review of PCM Technology for Thermal Energy Storage in the Built Environment: Part I
,”
Int. J. Low-Carbon Tech.
,
8
(
3
), pp.
159
164
.10.1093/ijlct/cts026
11.
Xu
,
B.
,
Li
,
P. W.
, and
Chan
,
C. L.
,
2014
, “
Fluid Charge/Discharge Strategies of Dual-Media Storage System in Starting Up Process of Daily Cycle Operation for a CSP Power Plant
,”
ASME
Paper No. ES2014-6444.
12.
Xu
,
B.
,
Li
,
P. W.
, and
Chan
,
C. L.
,
2015
, “
General Volume Sizing Strategy for Thermal Storage System Using Phase Change Material for Concentrated Solar Thermal Power Plant
,”
Appl. Energy
,
140
, pp.
256
268
.10.1016/j.apenergy.2014.11.046
13.
Xu
,
B.
,
Li
,
P.-W.
, and
Chan
,
C.-L.
,
2014
, “
Volume Sizing for Thermal Storage With Phase Change Material for Concentrated Solar Power Plant
,”
ASME
Paper No. ES2014-6321.10.1115/ES2014-6321
14.
Li
,
P. W.
,
Van Lew
,
J.
,
Chan
,
C. L.
,
Karaki
,
W.
,
Stephens
,
J.
, and
O’Brien
,
J. E.
,
2012
, “
Similarity and Generalized Analysis of Efficiencies of Thermal Energy Storage Systems
,”
Renewable Energy
,
39
(
1
), pp.
388
402
.10.1016/j.renene.2011.08.032
15.
Prasad
,
L.
, and
Muthukumar
,
P.
,
2013
, “
Design and Optimization of Lab-Scale Sensible Heat Storage Prototype for Solar Thermal Power Plant Application
,”
Sol. Energy
,
97
, pp.
217
229
.10.1016/j.solener.2013.08.022
16.
Xu
,
C.
,
Wang
,
Z.
,
He
,
Y.
,
Li
,
X.
, and
Bai
,
F.
,
2012
, “
Sensitivity Analysis of the Numerical Study on the Thermal Performance of a Packed-Bed Molten Salt Thermocline Thermal Storage System
,”
Appl. Energy
,
92
, pp.
65
75
.10.1016/j.apenergy.2011.11.002
17.
Yang
,
Z.
, and
Garimella
,
S. V.
,
2013
, “
Cyclic Operation of Molten-Salt Thermal Energy Storage in Thermoclines for Solar Power Plants
,”
Appl. Energy
,
103
, pp.
256
265
.10.1016/j.apenergy.2012.09.043
18.
Regin
,
A. F.
,
Solanki
,
S. C.
, and
Saini
,
J. S.
,
2009
, “
An Analysis of a Packed Bed Latent Heat Thermal Energy Storage System Using PCM Capsules: Numerical Investigation
,”
Renewable Energy
,
34
(
7
), pp.
1765
1773
.10.1016/j.renene.2008.12.012
19.
Wu
,
S.
, and
Fang
,
G.
,
2011
, “
Dynamic Discharging Characteristics Simulation on Solar Heat Storage System With Spherical Capsules Using Paraffin as Heat Storage Material
,”
Renewable Energy
,
36
(4), pp.
1190
1195
.10.1016/j.renene.2010.10.012
20.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2013
, “
Computational Studies on a Latent Thermal Energy Storage System With Integral Heat Pipes for Concentrating Solar Power
,”
Appl. Energy
,
103
, pp.
400
415
.10.1016/j.apenergy.2012.09.056
21.
Nithyanandam
,
K.
,
Pitchumani
,
R.
, and
Mathur
,
A.
,
2014
, “
Analysis of a Latent Thermocline Storage System With Encapsulated Phase Change Materials for Concentrating Solar Power
,”
Appl. Energy
,
113
, pp.
1446
1460
.10.1016/j.apenergy.2013.08.053
22.
Tumilowicz
,
E.
,
Chan
,
C.-L.
,
Xu
,
B.
, and
Li
,
P.-W.
,
2013
, “
An Enthalpy Formulation for Thermocline With Encapsulated PCM Thermal Storage and Benchmark Solution Using the Method of Characteristic
,”
ASME
Paper No. HT2013-17322.10.1115/HT2013-17322
23.
Tumilowicz
,
E.
,
Chan
,
C.-L.
,
Li
,
P.-W.
, and
Xu
,
B.
,
2014
, “
An Enthalpy Formulation for Thermocline With Encapsulated PCM Thermal Storage and Benchmark Solution Using the Method of Characteristic
,”
Int. J. Heat Mass Transfer
,
79
, pp.
362
377
.10.1016/j.ijheatmasstransfer.2014.08.017
24.
Van Lew
,
J.
,
Li
,
P.-W.
,
Chan
,
C.-L.
,
Karaki
,
W.
, and
Stephens
,
J.
,
2011
, “
Analysis of Heat Storage and Delivery of a Thermocline Tank Having Solid Filler Material
,”
ASME J. Sol. Energy Eng.
,
133
(
2
), p.
021003
.10.1115/1.4003685
25.
Xu
,
B.
,
Li
,
P.-W.
, and
Chan
,
C.-L.
,
2012
, “
Extending the Validity of Lumped Capacitance Method for Large Biot Number in Thermal Storage Application
,”
Sol. Energy
,
86
(
6
), pp.
1709
1724
.10.1016/j.solener.2012.03.016
26.
Schumann
,
T. E.
,
1929
, “
Heat Transfer: A Liquid Flowing Through a Porous Prism
,”
J. Franklin Inst.
,
208
(
3
), pp.
405
416
.10.1016/S0016-0032(29)91186-8
27.
Van Lew
,
J.
,
Li
,
P. W.
,
Chan
,
C. L.
,
Karaki
,
W.
, and
Stephens
,
J.
,
2009
, “
Transient Heat Delivery and Storage Process in a Thermocline Heat Storage System
,”
ASME
Paper No. IMECE2009-11701.10.1115/IMECE2009-11701
28.
Li
,
P.-W.
,
Van Lew
,
J.
,
Karaki
,
W.
,
Chan
,
C.-L.
,
Stephens
,
J.
, and
O’Brien
,
J. E.
,
2011
, “
Transient Heat Transfer and Energy Transport in Packed Bed Thermal Storage Systems
,”
Developments in Heat Transfer
,
M. A.
dos Santos Bernardes
, ed.,
INTECH Open Access Publisher
,
Rijeka, Croatia
.
29.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2002
,
Introduction to Heat Transfer
, 4th ed.,
John Wiley & Sons
,
New York
.
30.
Nellis
,
G.
, and
Klein
,
S.
,
2009
,
Heat Transfer
,
Cambridge University
,
New York
.
31.
Bradshaw
,
A. V.
,
Johnson
,
A.
,
McLachlan
,
N. H.
, and
Chiu
,
Y. T.
,
1970
, “
Heat Transfer Between Air and Nitrogen and Packed Beds of Non-Reacting Solids
,”
Trans. Inst. Chem. Eng.
,
48
, pp.
77
84
.
32.
Jeffreson
,
C. P.
,
1972
, “
Prediction of Breakthrough Curves in Packed Beds: I. Applicability of Single Parameter Models
,”
Am. Inst. Chem. Eng.
,
18
(
2
), pp.
409
416
.10.1002/aic.690180225
33.
Ferziger
,
J. H.
,
1998
,
Numerical Methods for Engineering Applications
,
Wiley-Interscience
,
Hoboken, NJ
.
34.
Valmiki
,
M. M.
,
Karaki
,
W.
,
Li
,
P.-W.
,
Van Lew
,
J.
,
Chan
,
C.-L.
, and
Stephens
,
J.
,
2012
, “
Experimental Investigation of Thermal Storage Processes in a Thermocline Tank
,”
ASME J. Sol. Energy Eng.
,
134
(
4
), p.
041003
.10.1115/1.4006962
35.
Li
,
P.-W.
,
Xu
,
B.
,
Han
,
J.
, and
Yang
,
Y.
,
2014
, “
Verification of a Model of Thermal Storage Incorporated With an Extended Lumped Capacitance Method for Various Solid–Fluid Structural Combinations
,”
Sol. Energy
,
105
, pp.
71
81
.10.1016/j.solener.2014.03.038
36.
Modi
,
A.
, and
Pérez-Segarra
,
C. D.
,
2014
, “
Thermocline Thermal Storage Systems for Concentrated Solar Power Plants: One-Dimensional Numerical Model and Comparative Analysis
,”
Sol. Energy
,
100
, pp.
84
93
.10.1016/j.solener.2013.11.033
37.
Bayón
,
R.
, and
Rojas
,
E.
,
2013
, “
Simulation of Thermocline Storage for Solar Thermal Power Plants: From Dimensionless Results to Prototypes and Real-Size Tanks
,”
Int. J. Heat Mass Transfer
,
60
, pp.
713
721
.10.1016/j.ijheatmasstransfer.2013.01.047
38.
US Department of Energy
,
2012
, “
SunShot Vision Study
,” http://www1.eere.energy.gov/solar/sunshot/
39.
Bejan
,
A.
,
1996
,
Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes
,
CRC Press
,
Boca Raton, FL
.
40.
Strasser
,
M. N.
, and
Selvam
,
R. P.
,
2014
, “
A Cost and Performance Comparison of Packed Bed and Structured Thermocline Thermal Energy Storage Systems
,”
Sol. Energy
,
108
, pp.
390
402
.10.1016/j.solener.2014.07.023
41.
Solutia, Inc.
,
1999
, “
Therminol VP-1 Heat Transfer Fluid by Solutia
,” Technical Bulletin No. 7239115B.
42.
Kenisarin
,
M. M.
,
2010
, “
High-Temperature Phase Change Materials for Thermal Energy Storage
,”
Renewable Sustainable Energy Rev.
,
14
(
3
), pp.
955
970
.10.1016/j.rser.2009.11.011
43.
National Renewable Energy Laboratory
,
2012
,
System Advisor Model Version 2012.5.11 (SAM 2012.5.11), User Documentation
,
National Renewable Energy Laboratory
,
Golden, CO
.
44.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2014
, “
Cost and Performance Analysis of Concentrating Solar Power Systems With Integrated Latent Thermal Energy Storage
,”
Energy
,
64
, pp.
793
810
.10.1016/j.energy.2013.10.095
You do not currently have access to this content.