Supercritical carbon dioxide (s-CO2) can be used both as a heat transfer and working fluid in solar power tower plants. The main concern in the design of a direct s-CO2 receiver is the high operating pressures, i.e., close to 20 MPa. At such high pressures, conventional receivers do not exhibit the necessary mechanical strength or thermal performance. In this paper, a receiver based on compact heat exchanger technology is developed. The receiver consists of a group of plates with square-shaped channels which are diffusion bonded together to tolerate the high operating pressure. A computational model is developed and validated against data in the literature. Inconel 625 is used as the base material because of its superior resistance against corrosion in the presence of s-CO2. The receiver heats s-CO2 with mass flow rate of 1 kg/s from 530 °C to 700 °C under a solar flux density of 500 kW/m2. The influence of different parameters on the performance of the receiver is evaluated by a parametric analysis. Subsequently, a multi-objective optimization is performed to determine the optimal geometry of the heat exchanger considering the tradeoff between objective functions, such as unit thermal resistance and pressure drop. The design variables are hydraulic diameter, number of layers, and distance between the channels. The mechanical strength of the system is the constraint to the problem, which is evaluated using an ASME code for the pressure vessels. Finally, the temperature profiles inside the channels and the surface of the receiver are presented. It is shown that the fluid reaches the desired temperature while the maximum temperature of the surface remains well below the material limit.

References

1.
Wright
,
S. A.
,
Conboy
,
T. M.
, and
Rochau
,
G. E.
,
2011
, “
Overview of Supercritical CO2 Power Cycle Development at Sandia National Laboratories
,”
Supercrit CO2 Power Cycle Symposium
, pp.
25
27
.
2.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T.
, and
Wagner
,
M.
,
2012
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for High Performance Concentrating Solar Power Systems
,”
ASME J. Solar Energy Eng.
,
135
(4), p. 041007.10.1115/1.4024030
3.
Besarati
,
S. M.
, and
Yogi Goswami
,
D.
,
2013
, “
Analysis of Advanced Supercritical Carbon Dioxide Power Cycles With a Bottoming Cycle for Concentrating Solar Power Applications
,”
ASME J Sol. Energy Eng.
,
136
(
1
), p.
010904
.10.1115/1.4025700
4.
Turchi
,
C. S.
,
2009
, “
Supercritical CO2 for Application in Concentrating Solar Power Systems
,”
SCCO2 Power Cycle Symposium
, RPI, Troy, NY, pp.
1
5
.
5.
SunShot Initiative—EERE—U.S. Department of Energy n.d.
6.
Li
,
Q.
,
Flamant
,
G.
,
Yuan
,
X.
,
Neveu
,
P.
, and
Luo
,
L.
,
2011
, “
Compact Heat Exchangers: A Review and Future Applications for a New Generation of High Temperature Solar Receivers
,”
Renewable Sustainable Energy Rev.
,
15
(
9
), pp.
4855
4875
.10.1016/j.rser.2011.07.066
7.
Hesselgreaves
,
J.
,
2001
,
Compact Heat Exchangers: Selection, Design and Operation
,
Elsevier
, Oxford, UK.
8.
Shah
,
R. K.
,
Kraus
,
A. D.
, and
Metzger
,
D. C.
,
1990
,
Compact Heat Exchangers
,
Hemisphere Publishing Corporation
, New York.
9.
Jacobson
,
D. M.
, and
Humpston
,
G.
,
Principles of Brazing
,
ASM International
, Materials Park, OH.
10.
Vrinat
,
M.
,
2010
,
Development of a High Temperature Air Solar Receiver Based on Compact Heat Exchanger Technology
,
University of Perpignan
,
Perpignan, France
.
11.
Vrinat
,
M.
,
Ferrière
,
A.
,
Mercier
,
P.
, and
Pra
,
F.
,
2008
, “
Development of a High Temperature Air Solar Receiver Based on Compact Heat Exchanger Technology
,”
14th SolarPaces Symposium
, Las Vegas, NV.
12.
Grange
,
B.
,
Ferrière
,
A.
,
Bellard
,
D.
,
Vrinat
,
M.
,
Couturier
,
R.
,
Pra
,
F.
, and
Fan
,
Y.
,
2011
, “
Thermal Performances of a High Temperature Air Solar Absorber Based on Compact Heat Exchange Technology
,”
ASME J. Sol. Energy Eng.
,
133
(
3
), p.
031004
.10.1115/1.4004356
13.
Li
,
Q.
,
Tourville
,
N. G. D.
,
Yadroitsev
,
I.
,
Yuan
,
X.
, and
Flamant
,
G.
,
2013
, “
Micro-Channel Pressurized-Air Solar Receiver Based on Compact Heat Exchanger Concept
,”
Sol. Energy
,
91
, pp.
186
195
.10.1016/j.solener.2013.02.004
14.
Lei
,
N.
,
Ortega
,
A.
, and
Vaidyanathan
,
R.
,
2007
, “
Modeling and Optimization of Multilayer Minichannel Heat Sinks in Single-Phase Flow
,”
ASME
Paper No. IPACK2007-33329.10.1115/IPACK2007-33329
15.
Lei
,
N.
,
2006
,
The Thermal Characteristics of Multilayer Minichannel Heat Sinks in Single-Phase and Two-Phase Flow
,
The University of Arizona
,
Tucson, AZ
.
16.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
, pp.
359
368
.
17.
Dostal
,
V. A.
,
2004
,
Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,
Massachusetts Institute of Technology (MIT)
, Cambridge, MA.
18.
Idelchik
,
I. E.
,
1994
,
Handbook of Hydraulic Resistance
,
CRC Press
, Boca Raton, FL.
19.
MATLAB, The MathWorks Inc.; 2012.
20.
Lemmon
,
E. W.
,
Mclinden
,
M. O.
, and
Huber
,
M. L.
,
2013
,
NIST Reference Fluid Thermodynamic and Transport Properties—REFPROP
,
NIST Standard Reference Database
, Boulder, CO.
21.
Firouzdor
,
V.
,
Sridharan
,
K.
,
Cao
,
G.
,
Anderson
,
M.
, and
Allen
,
T. R.
,
2013
, “
Corrosion of a Stainless Steel and Nickel-Based Alloys in High Temperature Supercritical Carbon Dioxide Environment
,”
Corros. Sci.
,
69
, pp.
281
291
.10.1016/j.corsci.2012.11.041
22.
Gibbs
,
J. P.
,
2010
,
Corrosion of Various Engineering Alloys in Supercritical Carbon Dioxide
,
Massachusetts Institute of Technology
, Cambridge, MA.
23.
Mylavarapu
,
S. K.
,
2008
,
Development of Compact Heat Exchangers for Very High Temperature Gas Cooled Reactors
,
Ohio State University
,
Columbus, OH
.
24.
Everhart
,
J. L.
,
1971
,
Engineering Properties of Nickel and Nickel Alloys
,
Plenum Press
, New York.
25.
Technical Bulletin for Inconel 625, Special Metals Corporation, www.specialmetals.com
26.
Coello
,
C. A. C.
, and
Dhaenens
,
C.
,
2010
,
Advances in Multi-Objective Nature Inspired Computing
,
Springer
, Berlin.10.1007/978-3-642-11218-8
27.
Atashkari
,
K.
,
Nariman-Zadeh
,
N.
,
Pilechi
,
A.
,
Jamali
,
A.
, and
Yao
,
X.
,
2005
, “
Thermodynamic Pareto Optimization of Turbojet Engines Using Multi-Objective Genetic Algorithms
,”
Int. J. Therm. Sci.
,
44
(
11
), pp.
1061
1071
.10.1016/j.ijthermalsci.2005.03.016
28.
Pouraghaie
,
M.
,
Atashkari
,
K.
,
Besarati
,
S. M.
, and
Nariman-Zadeh
,
N.
,
2010
, “
Thermodynamic Performance Optimization of a Combined Power/Cooling Cycle
,”
Energy Conver. Man.
,
51
(1), pp.
204
211
.
29.
Demirkaya
,
G.
,
Besarati
,
S.
,
Vasquez Padilla
,
R.
,
Ramos Archibold
,
A.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. L.
,
2012
, “
Multi-Objective Optimization of a Combined Power and Cooling Cycle for Low-Grade and Mid-Grade Heat Sources
,”
ASME J. Energy Resour. Technol
,
134
(
3
), p.
032002
.10.1115/1.4005922
30.
Besarati
,
S. M.
,
Atashkari
,
K.
,
Jamali
,
A.
,
Hajiloo
,
A.
, and
Nariman-Zadeh
,
N.
,
2010
, “
Multi-Objective Thermodynamic Optimization of Combined Brayton and Inverse Brayton Cycles Using Genetic Algorithms
,”
Energy Convers. Manag.
,
51
(
1
), pp.
212
217
.10.1016/j.enconman.2009.09.015
31.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
32.
Pierres
,
R. L.
,
Southall
,
D.
, and
Osborne
,
S.
,
2011
, “
Impact of Mechanical Design Issues on Printed Circuit Heat Exchangers
,”
SCO2 Power Cycle Symposium
, University of Colorado, Boulder, CO.
33.
ASME Boiler and Pressure Vessel Code, Section III. 1998.
You do not currently have access to this content.