A mathematical model simulating the emptying behavior of a pressurized solar collector loop with solar collectors with a good emptying behavior is developed and validated with measured data. The calculated results are in good agreement with the measured results. The developed simulation model is therefore suitable to determine the behavior of a solar collector loop during stagnation. A volume ratio R, which is the ratio of the volume of the vapor in the upper pipes of the solar collector loop during stagnation and the fluid content of solar collectors, is introduced to determine the mass of the collector fluid pushed into the expansion vessel during stagnation, Min. A correlation function for the mass Min and the volume ratio R for solar collector loops is obtained. The function can be used to determine a suitable size of expansion vessels for solar collector loops.

References

References
1.
Streicher
,
W.
,
2000
, “
Minimising the Risk of Water Hammer and Other Problems at the Beginning of Stagnation of Solar Thermal Plants—A Theoretical Approach
,”
Sol. Energy
,
69
, pp.
187
196
.10.1016/S0038-092X(01)00018-4
2.
Hausner
,
R.
, and
Fink
,
C.
,
2000
, “
Stagnation Behavior of Thermal Solar Systems
,”
Proceedings of Eurosun
,
Copenhagen, Denmark
, ISES-Europe.
3.
Esen
,
M.
, and
Esen
,
H.
,
2005
, “
Experimental Investigation of a Two-Phase Closed Thermosyphon Solar Water Heater
,”
Sol. Energy
,
79
(
5
), pp.
459
468
.10.1016/j.solener.2005.01.001
4.
Hausner
,
R.
, and
Fink
,
C.
,
2002
, “
Stagnation Behavior of Thermal Solar Systems
,”
Proceedings of Eurosun
,
Bologna, Italy
, ISES-Europe.
5.
Suter
,
J.-M.
, and
Hausner
,
R.
,
2003
, “
Stagnation Behaviour
,”
Solar Heating System for Houses—A Design Handbook for Solar Combisystems
,
W.
Weiss
, ed.,
James & James Ltd
,
London
, pp.
171
181
.
6.
Dragsted
,
J.
,
Furbo
,
S.
,
Chen
,
Z.
, and
Perers
,
B.
,
2010
, “
Pressure and Temperature Development in a Solar Heating System During Stagnation
,”
Eurosun
,
Graz, Austria
.
7.
Chato
,
J. C.
,
1962
, “
Laminar Condensation Inside Horizontal and Inclined Tubes
,”
J. ASHRAE
,
4
, pp.
52
60
.
8.
Al-Ansari
,
A. D.
, and
Owen
,
I.
,
1999
, “
Thermal and Hydrodynamic Analysis of the Condensation and Evaporation Processes in Horizontal Tube Desalination Plant
,”
Int. J. Heat Mass Transfer
,
42
(
9
), pp.
1633
1644
.10.1016/S0017-9310(98)00240-3
9.
Chen
,
I. Y.
, and
Kocamustafaogullari
,
G.
,
1987
, “
Condensation Heat Transfer Studies for Stratified, Cocurrent Two-Phase Flow in Horizontal Tubes
,”
Int. J. Heat Mass Transfer
,
30
(
6
), pp.
1133
1148
.10.1016/0017-9310(87)90043-3
10.
Xu
,
L.
,
Wang
,
S. Y.
,
Wang
,
S. C.
, and
Wang
,
Y. X.
,
2004
, “
Studies on Heat-Transfer Film Coefficients Inside a Horizontal Tube in Falling Film Evaporators
,”
Desalination
,
166
(
1–3
), pp.
215
222
.10.1016/j.desal.2004.06.076
11.
Stephan
,
K.
,
1992
, “
Heat Transfer During Stratified Flow
,”
Heat Transfer in Condensation and Boiling
,
K.
Stephan
, ed.,
Springer-Verlag
,
New York
, pp.
55
58
.
12.
Wang
,
J. C. Y.
, and
Ma
,
Y. W.
,
1991
, “
Condensation Heat Transfer Inside Vertical and Inclined Thermosyphons
,”
ASME J. Heat Transfer
,
113
(
1–3
), pp.
777
780
.10.1115/1.2910634
13.
Saffari
,
H.
, and
Naziri
,
V.
,
2010
, “
Theoretical Modeling and Numerical Solution of Stratified Condensation in Inclined Tubes
,”
J. Mech. Sci. Technol.
,
24
(
12
), pp.
2587
2596
.10.1007/s12206-010-0916-0
You do not currently have access to this content.