Copper oxide (CuO) is a p-type semiconductor having a band gap energy of 1.5 eV, which is close to the ideal energy gap of 1.4 eV required for solar cells to allow good solar spectral absorption. The inherent electrical characteristics of CuO nanoparticles make them attractive candidates for improving the performance of polymer solar cells (PSCs) when incorporated in the active polymer layer. The incorporation of CuO nanoparticles in P3HT/PC70BM solar cells at the optimum concentration yields 40.7% improvement in power conversion efficiency (PCE). The CuO nanoparticles in the size range of 100–150 nm have an effective average band gap of 2.07 eV. In addition, the X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses show improvement in P3HT crystallinity, and surface analysis by atomic force microscope (AFM) shows an increase in surface roughness of the PSCs. The key factors namely photo-absorption, exciton diffusion, dissociation, charge transport, and charge collection inside the PSCs which affect the external quantum efficiency (EQE) and PCE of these cells are analyzed.

References

References
1.
Thompson
,
B. C.
, and
Frechet
,
J. M. J.
,
2008
, “
Polymer–Fullerene Composite Solar Cells
,”
Angew. Chem. Int. Ed.
,
47
(
1
), pp.
58
77
.10.1002/anie.200702506
2.
Abu-Zahra
,
N.
, and
Algazzar
,
M.
,
2013
, “
Effect of Crystallinity on the Performance of P3HT/PC70BM/n-Dodecylthiol Polymer Solar Cells
,”
ASME J. Sol. Energy Eng.
,
136
(
2
), p.
021023
.10.1115/1.4026100
3.
Kim
,
C. H.
,
Cha
,
S. H.
,
Kim
,
S. C.
,
Song
,
M.
,
Lee
,
J.
,
Shin
,
W. S.
,
Moon
,
S. J.
,
Bahng
,
J. H.
,
Kotov
,
N. A.
, and
Jin
,
S. H.
,
2011
, “
Silver Nanowire Embedded in P3HT:PCBM for High-Efficiency Hybrid Photovoltaic Device Applications
,”
ACS Nano
,
5
(
4
), pp.
3319
3325
.10.1021/nn200469d
4.
Misra
,
R.
,
Fu
,
B. X.
,
Plagge
,
A.
, and
Morgan
,
S. E.
,
2009
, “
POSS-Nylon 6 Nanocomposites: Influence of POSS Structure on Surface and Bulk Properties
,”
J. Polym. Sci., Part B
,
47
(
11
), pp.
1088
1102
.10.1002/polb.21714
5.
Jin
,
S.
,
Naidu
,
B. V. K.
,
Jeon
,
H.
,
Park
,
S.
,
Park
,
J.
,
Kim
,
S. C.
,
Lee
,
J. W.
, and
Gal
,
Y.
,
2007
, “
Optimization of Process Parameters for High-Efficiency Polymer Photovoltaic Devices Based on P3HT: PCBM System
,”
Sol. Energy Mater. Sol. Cells
,
91
(
13
), pp.
1187
1193
.10.1016/j.solmat.2007.04.001
6.
Xie
,
F.
,
Choy
,
W. C. H.
,
Wang
,
C. C. D.
,
Sha
,
W. E. I.
, and
Fung
,
D. D. S.
,
2011
, “
Improving the Efficiency of Polymer Solar Cells by Incorporating Gold Nanoparticles into all Polymer Layers
,”
Appl. Phys. Lett.
,
99
(
15
), p.
153304
.10.1063/1.3650707
7.
Li
,
G.
,
Zhu
,
R.
, and
Yang
,
Y.
,
2012
, “
Polymer Solar Cells
,”
Nat. Photonics
,
6
(
3
), pp.
153
161
.10.1038/nphoton.2012.11
8.
Beek
,
W. J. E.
,
Wienk
,
M. M.
, and
Janssen
,
R. A. J.
,
2004
, “
Efficient Hybrid Solar Cells From Zinc Oxide Nanoparticles and a Conjugated Polymer
,”
Adv. Mater.
,
16
(
12
), pp.
1009
1013
.10.1002/adma.200306659
9.
Liao
,
H.
,
Tsao
,
C.
,
Lin
,
T.
,
Jao
,
M.
,
Chuang
,
C.
,
Chang
,
S.
,
Huang
,
Y.
,
Shao
,
Y.
,
Chen
,
C.
,
Jeng
,
C.
,
Chen
,
Y.
, and
Su
,
W.
,
2012
, “
Nanoparticle-Tuned Self-Organization of a Bulk Heterojunction Hybrid Solar Cell With Enhanced Performance
,”
ACS Nano
,
6
(
2
), pp.
1657
1666
.10.1021/nn204654h
10.
Liu
,
K.
,
Qu
,
S.
,
Zhang
,
X.
,
Tan
,
F.
, and
Wang
,
Z.
,
2013
, “
Improved Photovoltaic Performance of Silicon Nanowire/Organic Hybrid Solar Cells by Incorporating Silver Nanoparticles
,”
Nanoscale Res. Lett.
,
8
(
88
), pp.
1
6
.10.1186/1556-276X-8-88
11.
Sun
,
B.
,
Marx
,
E.
, and
Greenham
,
N. C.
,
2003
, “
Photovoltaic Devices Using Blends of Branched CdSe Nanoparticles and Conjugated Polymers
,”
Nano Lett.
,
3
(
7
), pp.
961
963
.10.1021/nl0342895
12.
Zhu
,
R.
,
Jiang
,
C. Y.
,
Liu
,
B.
, and
Ramakrishna
,
S.
,
2009
, “
Highly Efficient Nanoporous TiO2-Polythiophene Hybrid Solar Cells Based on Interfacial Modification Using a Metal-Free Organic Dye
,”
Adv. Mater.
,
21
(
9
), pp.
994
1000
.10.1002/adma.200802388
13.
Shao
,
S.
,
Liu
,
F.
,
Fang
,
G.
,
Zhang
,
B.
,
Xie
,
Z.
, and
Wang
,
L.
,
2011
, “
Enhanced Performances of Hybrid Polymer Solar Cells With p-Methoxybenzoic Acid Modified Zinc Oxide Nanoparticles as an Electron Acceptor
,”
Org. Electron.
,
12
(
4
), pp.
641
647
.10.1016/j.orgel.2011.01.011
14.
Wu
,
Z.
,
Song
,
T.
,
Xia
,
Z.
,
Wei
,
H.
, and
Sun
,
B.
,
2013
, “
Enhanced Performance of Polymer Solar Cell With ZnO Nanoparticle Electron Transporting Layer Passivated by In Situ Cross-Linked Three-Dimensional Polymer Network
,”
Nanotechnology
,
24
(
48
), pp.
1
8
.10.1088/0957-4484/24/48/484012
15.
Mbule
,
P. S.
,
Kim
,
T. H.
,
Kimb
,
B. S.
,
Swart
,
H. C.
, and
Ntwaeaborw
,
O. M.
,
2013
, “
Effects of Particle Morphology of ZnO Buffer Layer on the Performance of Organic Solar Cell Devices
,”
Sol. Energy Mater. Solar Cells
,
112
, pp.
6
12
.10.1016/j.solmat.2013.01.010
16.
Shen
,
W.
,
Tang
,
J.
,
Yang
,
R.
,
Cong
,
H.
,
Bao
,
X.
,
Wang
,
Y.
,
Wang
,
X.
,
Huang
,
Z.
,
Liu
,
J.
,
Huang
,
L.
,
Jiao
,
J.
,
Xu
,
Q.
,
Chen
,
W.
, and
Belfiore
,
L. A.
,
2014
, “
Enhanced Efficiency of Polymer Solar Cells by Incorporated Ag–SiO2 Core–Shell Nanoparticles in the Active Layer
,”
RSC Adv.
,
4
(
9
), pp.
4379
4386
.10.1039/c3ra45495a
17.
Jankovic
,
V.
,
Yang
,
Y. M.
,
You
,
J.
,
Dou
,
L.
,
Liu
,
Y.
,
Cheung
,
P.
,
Chang
,
J. P.
, and
Yang
,
Y.
,
2013
, “
Active Layer-Incorporated, Spectrally Tuned Au/SiO2 Core/Shell Nanorod-Based Light Trapping for Organic Photovoltaics
,”
ACS Nano
,
7
(
5
), pp.
3815
3822
.10.1021/nn400246q
18.
Kidowaki
,
H.
,
Oku
,
T.
, and
Akiyama
,
T.
,
2012
, “
Fabrication and Characterization of CuO/ZnO Solar Cells
,”
J. Phys.
,
352
(
1
), p.
012022
.10.1088/1742-6596/352/1/012022
19.
Cheng
,
Y.
,
Yang
,
S.
, and
Hsu
,
C.
,
2009
, “
Synthesis of Conjugated Polymers for Organic Solar Cell Applications
,”
Chem. Rev.
,
109
(
11
), pp.
5868
5923
.10.1021/cr900182s
20.
Liu
,
R.
,
2014
, “
Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells
,”
Materials
,
7
(
4
), pp.
2747
2771
.10.3390/ma7042747
21.
“Solar Cell Conversion-Efficiency limits, Solar Cell,” Accessed Aug. 2014. Available at: http://aerostudents.com/files/solarCells/CH5SolarCellConversionEfficiencyLimits.pdf
22.
Wright
,
M.
, and
Uddin
,
A.
,
2012
, “
Organic–Inorganic Hybrid Solar Cells: A Comparative Review
,”
Sol. Energy Mater. Sol. Cells
,
107
, pp.
87
111
.10.1016/j.solmat.2012.07.006
23.
Moliton
,
A.
, and
Nunzi
,
J. M.
,
2006
, “
How to Model the Behavior of Organic Photovoltaic Cells
,”
Polym. Int.
,
55
(
6
), pp.
583
600
.10.1002/pi.2038
24.
Bundgaard
,
E.
, and
Krebs
,
F. C.
,
2007
, “
Low Band Gap Polymers for Organic Photovoltaics
,”
Sol. Energy Mater. Sol. Cells
,
91
(
11
), pp.
954
985
.10.1016/j.solmat.2007.01.015
25.
Bundgaard
,
E.
,
Shaheen
,
S. E.
,
Krebs
,
F. C.
, and
Ginley
,
D. S.
,
2007
, “
Bulk Heterojunctions Based on a Low Band Gap Copolymer of Thiophene and Benzothiadiazole
,”
Sol. Energy Mater. Solar Cells
,
91
(
17
), pp.
1631
1637
.10.1016/j.solmat.2007.05.013
26.
De Freitas
,
J. N.
,
Korala
,
L.
,
Reynolds
,
L. X.
,
Haque
,
S. A.
,
Brock
,
S. L.
, and
Nogueira
,
A. F.
,
2012
, “
Connecting the (Quantum) Dots: Towards Hybrid Photovoltaic Devices Based on Chalcogenide Gels
,”
Phys. Chem. Chem. Phys.
,
14
(
43
), pp.
15180
15184
.10.1039/c2cp42998e
27.
Brabec
,
C. J.
,
Gowrisanker
,
S.
,
Halls
,
J. J. M.
,
Laird
,
D.
,
Jia
,
S.
, and
Williams
,
S. P.
,
2010
, “
Polymer–Fullerene Bulk-Heterojunction Solar Cells
,”
Adv. Mater.
,
22
(
34
), pp.
3839
3856
.10.1002/adma.200903697
28.
Baeten
,
L.
,
Conings
,
B.
,
Boyen
,
H. G.
,
D'Haen
,
J.
,
Hardy
,
A.
,
D'Olieslaeger
,
M.
,
Manca
,
J. V.
, and
Van Bael
,
M. K.
,
2011
, “
Towards Efficient Hybrid Solar Cells Based on Fully Polymer Infiltrated ZnO Nanorod Arrays
,”
Adv. Mater.
,
23
(
25
), pp.
2802
2805
.10.1002/adma.201100414
29.
George
,
F. A. D.
,
Muth
,
M. A.
,
Kirchartz
,
T.
,
Engmann
,
S.
,
Hoppe
,
H.
,
Gobsch
,
G.
,
Thelakkat
,
M.
,
Blouin
,
N.
,
Tierney
,
S.
,
Carrasco-Orozco
,
M.
,
Durrant
,
J. R.
, and
Nelson
,
J.
,
2013
, “
Influence of Doping on Charge Carrier Collection in Normal and Inverted Geometry Polymer:Fullerene Solar Cells
,”
Sci. Rep.
,
3
, Article No.
3335
.10.1038/srep03335
30.
Yoshida
,
K.
,
Oku
,
T.
,
Suzuki
,
A.
,
Akiyama
,
T.
, and
Yamasaki
,
Y.
,
2013
, “
Fabrication and Characterization of PCBM:P3HT Bulk Heterojunction Solar Cells Doped With Germanium Phthalocyanine or Germanium Naphthalocyanine
,”
Mater. Sci. Appl.
,
4
(
4A
), pp.
1
15
.10.4236/msa.2013.44A001
31.
Cullity
,
B. D.
, and
Stock
,
S. R.
,
2001
,
Elements of X-Ray Diffraction
,
3rd ed.
,
Prentice Hall
,
London, UK
.
32.
Groves
,
I.
,
Lever
,
T.
, and
Hawkins
,
N.
,
2014
, “
Determination of Polymer Crystallinity by DSC
,” Thermal Analysis Application Brief, Thermal Analysis and Rheology, TA-123, Accessed Sept. 2014. Available at: http://www.tainstruments.com/library_download.aspx?file=TA123.PDF
33.
Pascui
,
O. F.
,
Lohwasser
,
R.
,
Sommer
,
M.
,
Thelakkat
,
M.
,
Thurn-Albrecht
,
T.
, and
Saalwächter
,
K.
,
2010
, “
High Crystallinity and Nature of Crystal–Crystal Phase Transformations in Regioregular Poly(3-hexylthiophene)
,”
Macromolecules
,
43
(
22
), pp.
9401
9410
.10.1021/ma102205t
34.
Sun
,
Y.
,
Cui
,
C.
,
Wang
,
H.
, and
Li
,
Y.
,
2011
, “
Efficiency Enhancement of Polymer Solar Cells Based on Poly(3-hexylthiophene)/Indene-C70 Bisadduct via Methylthiophene Additive
,”
Adv. Energy Mater.
,
1
(
6
), pp.
1058
1061
.10.1002/aenm.201100378
35.
Chang
,
Y. M.
, and
Wang
,
L.
,
2008
, “
Efficient Poly(3-hexylthiophene)-Based Bulk Heterojunction Solar Cells Fabricated by an Annealing-Free Approach
,”
J. Phys. Chem. C
,
112
(
45
), pp.
17716
17720
.10.1021/jp804909a
36.
Gregg
,
B. A.
, and
Hanna
,
M. C.
,
2003
, “
Comparing Organic to Inorganic Photovoltaic Cells: Theory, Experiment, and Simulation
,”
J. Appl. Phys.
,
93
(
6
), pp.
3605
3614
.10.1063/1.1544413
37.
Wang
,
D. H.
,
Moon
,
J. S.
,
Seifter
,
J.
,
Jo
,
J.
,
Park
,
J. H.
,
Park
,
O.
, and
Heeger
,
A. J.
,
2011
, “
Sequential Processing: Control of Nanomorphology in Bulk Heterojunction Solar Cells
,”
Nano Lett.
,
11
(
8
), pp.
3163
3168
.10.1021/nl202320r
38.
Gadisa
,
A.
,
Svensson
,
M.
,
Andersson
,
M. R.
, and
Inganäs
,
O.
,
2004
, “
Correlation Between Oxidation Potential and Open-Circuit Voltage of Composite Solar Cells Based on Blends of Polythiophenes/Fullerene Derivative
,”
Appl. Phys. Lett.
,
84
(
9
), pp.
1609
1611
.10.1063/1.1650878
You do not currently have access to this content.