The rapidly growing markets for distributed and centralized grid-connected photovoltaic (PV) systems require the reliable and available information for reflecting and predicting the electricity generation of PV systems. In this work, the relationship between PV energy production and meteorological environmental factors is discussed by correlation analysis and partial correlation analysis. Meteorological data available, including the clearness index, diurnal temperature range, the global radiation on horizontal surface, and etc., are used as inputs. Then, according to factor analysis, these various interaction factors are extracted as two independent common factors. Finally, a new method based on factor analysis and multiple regression analysis has been developed for estimating the daily PV energy production. The meteorological data are collected from Wuhan Observatory, and power data from a roof grid-connected PV system located at Huazhong University of Science and Technology in Wuhan. The data of the whole year (from March in 2010 to February in 2011) has been used for model calibration and the following data of March in 2011 is used to test the predictions. The results show that there is significant positive correlation between the estimated values and the measured values; the rMBE per day is −0.14%, MAPE per day is 13.60% and rRMSE per day is 18.04%.

References

References
1.
Ottmar
,
E.
,
Ramon
,
P. M.
,
Youba
,
S.
,
Christopher
,
F.
,
Vicente
,
B.
,
Thomas
,
F. S.
,
Qin
,
D.
,
Jan
,
M.
,
Katharine
,
M.
,
Gian-Kasper
,
P.
,
Steffen
,
S.
,
Gerrit
,
H.
, and
Michael
,
M.
,
2011
,
Special Report on Renewable Energy Sources and Climate Change Mitigation
,
Cambridge University
,
Cambridge, UK
, Chap. I.
2.
Gaëtan
,
M.
,
Marie
,
L.
,
Manoël
,
R.
,
Ioannis-Thomas
,
T.
, and
Myrto
,
P.
,
2013
,
Global Market Outlook for Photovoltaics 2013–2017
,
European Photovoltaic Industry Association (EPIA)
,
Brussels, France
.
3.
King
,
D. L.
,
Kratochvil
,
J. A.
,
Boyson
,
W. E.
, and
Bower
,
W. I.
,
1998
, “
Field Experience With a New Performance Characterization Procedure for Photovoltaic Arrays
,”
Proceedings of the 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion
, Vienna, Austria, pp.
1
8
.
4.
Radziemska
,
E.
,
2003
, “
The Effect of Temperature on the Power Drop in Crystalline Silicon Solar Cells
,”
Renewable Energy
,
28
(
1
), pp.
1
12
.10.1016/S0960-1481(02)00015-0
5.
Zhou
,
W.
,
Yang
,
H. X.
, and
Fang
,
Z. H.
,
2007
, “
A Novel Model for Photovoltaic Array Performance Prediction
,”
Appl. Energy
,
84
(
12
), pp.
1187
1198
.10.1016/j.apenergy.2007.04.006
6.
Yona
,
A.
,
Tomonobu
,
S.
, and
Saber
,
A. Y.
,
2008
, “
Application of Neural Network to 24-h-Ahead Generating Power Forecasting for PV System
,”
Proceedings of the IEEE Power and Energy Society General Meeting
, Pittsburgh, PA, pp.
1
6
.
7.
Almonacid
,
F.
,
Rus
,
C.
,
Pérez
,
P. J.
, and
Hontoria
,
L.
,
2009
, “
Estimation of the Energy of a PV Generator Using Artificial Neural Network
,”
Renewable Energy
,
34
(
12
), pp.
2743
2750
.10.1016/j.renene.2009.05.020
8.
Notton
,
G.
,
Lazarov
,
V.
, and
Stoyanov
,
L.
,
2010
, “
Optimal Sizing of a Grid-Connected PV System for Various PV Module Technologies and Inclinations, Inverter Efficiency Characteristics and Locations
,”
Renewable Energy
,
35
(
2
), pp.
541
554
.10.1016/j.renene.2009.07.013
9.
Lorenz
,
E.
,
Scheidsteger
,
T.
,
Hurka
,
J.
,
Heinemann
,
D.
, and
Kurz
,
C.
,
2011
, “
Regional PV Power Prediction for Improved Grid Integration
,”
Prog. Photovoltaics: Res. Appl.
,
19
(
7
), pp.
757
771
.10.1002/pip.1033
10.
Kenny
,
R.
,
Dunlop
,
E.
,
Ossenbrink
,
H.
, and
Dunlop
,
E.
,
2006
, “
A Practical Method for the Energy Rating of c-Si Photovoltaic Modules Based on Standard Tests
,”
Prog. Photovoltaics: Res. Appl.
,
14
(
2
), pp.
155
166
.10.1002/pip.658
11.
Nguyen
,
H. T.
, and
Pearce
,
J. M.
,
2010
, “
Estimating Potential Photovoltaic Yield With r.sun and the Open Source Geographical Resources Analysis Support System
,”
Sol. Energy
,
84
(
5
), pp.
831
843
.10.1016/j.solener.2010.02.009
12.
Perpinan
,
O.
,
Lorenzo
,
E.
, and
Castro
,
M. A.
,
2006
, “
On the Calculation of Energy Produced by a PV Grid-Connected System
,”
Prog. Photovoltaics: Res. Appl.
,
15
(
3
), pp.
265
274
.10.1002/pip.728
13.
So
,
J. H.
,
Jung
,
Y. S.
,
Yu
,
G. J.
,
Choi
,
J. Y.
, and
Choi
,
J. H.
,
2007
, “
Performance Results and Analysis of 3 kW Grid-Connected PV Systems
,”
Renewable Energy
,
32
(
11
), pp.
1858
1872
.10.1016/j.renene.2006.10.003
14.
Mondol
,
J. D.
,
Yohanis
,
Y. G.
, and
Norton
,
B.
,
2007
, “
The Impact of Array Inclination and Orientation on the Performance of a Grid-Connected Photovoltaic System
,”
Renewable Energy
,
32
(
1
), pp.
118
140
.10.1016/j.renene.2006.05.006
15.
Macedo
,
W. N.
, and
Zilles
,
R.
,
2007
, “
Operational Results of Grid-Connected Photovoltaic System With Different Inverter's Sizing Factors (ISF)
,”
Prog. Photovoltaics: Res. Appl.
,
15
(
4
), pp.
337
352
.10.1002/pip.740
16.
Bacher
,
P.
,
Madsen
,
H.
, and
Nielsen
,
H. A.
,
2009
, “
Online Short-Term Solar Power Forecasting
,”
Sol. Energy
,
83
(
10
), pp.
1772
1783
.10.1016/j.solener.2009.05.016
17.
Cai
,
T.
,
Duan
,
S. X.
, and
Chen
,
C. S.
,
2010
, “
Forecasting Power Output for Grid-Connected Photovoltaic Power System Without Using Solar Radiation Measurement
,” Symposium on 2nd
IEEE
International Power Electronics for Distributed Generation Systems
, Hefei, China, June 16–18, pp.
773
777
.10.1109/PEDG.2010.5545754
18.
Didier
,
M.
,
Lucien
,
W.
,
Yves
,
P.
, and
Sophie
,
P.
,
2008
, “
Performance Prediction of Grid-Connected Photovoltaic Systems Using Remote Sensing. International Energy Agency Photovoltaic Power Systems Programme
,” International Energy Agency (IEA), Paris, France, IEA PVPS Task 2 Report No. IEA-PVPS T2-07.
19.
Kudo
,
M.
,
Nozaki
,
Y.
,
Endo
,
H.
, and
Sumita
,
J.
,
2009
, “
Forecasting Electric Energy Production in a Photovoltaic Power System for an Energy Network
,”
Electr. Eng. Jpn.
,
167
(
4
), pp.
16
23
.10.1002/eej.20755
20.
Chen
,
C. S.
,
Duan
,
S. X.
,
Cai
,
T.
, and
Liu
,
B.
,
2011
, “
Online 24-H Solar Power Forecasting Based on Weather Type Classification Using Artificial Neural Network
,”
Sol. Energy
,
85
(
11
), pp.
2856
2870
.10.1016/j.solener.2011.08.027
21.
Chupong
,
C.
, and
Plangklang
,
B.
,
2011
, “
Forecasting Power Output of PV Grid Connected System in Thailand Without Using Solar Radiation Measurement
,”
Energy Proc.
,
9
, pp.
230
237
.10.1016/j.egypro.2011.09.024
22.
Almonacid
,
F.
,
Pérez
,
P. J.
,
Eduardo
,
F. F.
, and
Hontoria
,
L.
,
2014
, “
A Methodology Based on Dynamic Artificial Neural Network for Short-Term Forecasting of the Power Output of a PV Generator
,”
Energy Convers. Manage.
,
85
(
9
), pp.
389
398
.10.1016/j.enconman.2014.05.090
23.
De Giorgi
,
M. G.
,
Congedo
,
P. M.
, and
Malvoni
,
M.
,
2014
, “
Photovoltaic Power Forecasting Using Statistical Methods: Impact of Weather Data
,”
IET Sci. Meas. Technol.
,
8
(
3
), pp.
90
97
.10.1049/iet-smt.2013.0135
24.
Shi
,
J.
,
Lee
,
W. J.
,
Liu
,
Y.
,
Yang
,
Y.
, and
Wang
,
P.
,
2012
, “
Forecasting Power Output of Photovoltaic Systems Based on Weather Classification and Support Vector Machines
,”
IEEE Trans. Ind. Appl.
,
48
(
3
), pp.
1064
1069
.10.1109/TIA.2012.2190816
25.
Yang
,
H. T.
,
Huang
,
C. M.
,
Huang
,
Y. C.
, and
Pai
,
Y. S.
,
2014
, “
A Weather-Based Hybrid Method for 1-Day Ahead Hourly Forecasting of PV Power Output
,”
IEEE Trans. Sustainable Energy
,
5
(
3
), pp.
917
926
.10.1109/TSTE.2014.2313600
26.
Elminir
,
H. K.
,
Ghitas
,
A. E.
,
El-Hussainy
,
F.
,
Hamid
,
R.
,
Beheary
,
M. M.
, and
Abdel-Moneim
,
K. M.
,
2006
, “
Optimum Solar Flat-Plate Collector Slope: Case Study for Helwan, Egypt
,”
Energy Convers. Manage.
,
47
(
5
), pp.
624
627
.10.1016/j.enconman.2005.05.015
27.
Journée
,
M.
, and
Bertrand
,
C.
,
2011
, “
Quality Control of Solar Radiation Data Within the RMIB Solar Measurements Network
,”
Sol. Energy
,
85
(
1
), pp.
72
86
.10.1016/j.solener.2010.10.021
28.
King
,
D. L.
,
Boysen
,
W. E.
, and
Kratochvil
,
J. A.
,
2002
, “
Analysis of Factors Influencing the Annual Energy Production of Photovoltaic Systems
,” Proceedings of 29th
IEEE
PV Specialists Conference
, New Orleans, LA, May 19–24, pp.
19
24
.10.1109/PVSC.2002.1190861
29.
Yang
,
H. X.
, and
Lu
,
L.
,
2007
, “
The Optimum Tilt Angles and Orientations of PV Claddings for Building-Integrated Photovoltaic (BIPV) Applications
,”
ASME J. Sol. Energy Eng.
,
129
(
2
), pp.
253
255
.10.1115/1.2212439
30.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2006
,
Solar Engineering of Thermal Processes
,
3rd ed.
,
Wiley
,
New York
, Chap. I.
31.
Huang
,
J. Y.
,
2004
,
Meteorological Statistical Analysis and Forecast Method
,
3rd ed.
,
China Meteorological Press
,
Beijing, China
, Chap. V.
32.
Junior
,
J. G.
,
Oozeki
,
T.
,
Ohtake
,
H.
,
Shimose
,
K.-I.
,
Takashima
,
T.
, and
Ogimoto
,
K.
,
2014
, “
Regional Forecasts and Smoothing Effect of Photovoltaic Energy Production in Japan: An Approach With Principal Component Analysis
,”
Renewable Energy
,
68
(
8
), pp.
403
413
.10.1016/j.renene.2014.02.018
33.
He
,
X. Q.
, and
Liu
,
W. Q.
,
2006
, “
Least Square Regression and Residual Analysis
,”
Stat. Res.
,
23
(
4
), pp.
53
57
.
You do not currently have access to this content.