In this paper, several models to forecast the hourly solar irradiance with a day in advance using artificial neural network techniques have been developed and analyzed. The forecast irradiance is the one incident on the plane of the modules array of a photovoltaic plant. Pure statistical (ST) models that use only local measured data and model output statistics (MOS) approaches to refine numerical weather prediction data are tested for the University of Rome “Tor Vergata” site. The performance of ST and MOS, together with the persistence model (PM), is compared. The ST models improve the performance of the PM of around 20%. The combination of ST and NWP in the MOS approach gives the best performance, improving the forecast of approximately 39% with respect to the PM.

References

References
1.
Kleissl
,
J.
,
2013
,
Solar Energy Forecasting and Resource Assessment
,
1st ed.
,
Academic Press
.
2.
Pelland
,
S.
,
Remund
,
J.
,
Kleissl
,
J.
,
Oozeki
,
T.
, and
De Brabandere
,
K.
,
2013
, “
Photovoltaic and Solar Forecasting: State of the Art
,” IEA PVPS, Task 14, Subtask 3.1, Report No. IEA-PVPS T14-01.
3.
Muller
,
S. C.
, and
Remund
,
J.
,
2010
, “
Advances in Radiation Forecast Based on Regional Weather Models MMF and WRF
,”
Proceedings of the 25th EUPVSEC Conference 2010
, Valencia, Spain, Sept. 6–9, pp.
4629
4632
.
4.
Perez
,
R.
,
Kivalov
,
S.
,
Schlemmer
,
J.
,
Hemker
,
K.
, Jr.
,
Rennè
,
D.
, and
Hoff
,
T. E.
,
2010
, “
Validation of Short and Medium Term Operational Solar Radiation Forecasts in the US
,”
Sol. Energy
,
84
(
12
), pp.
2161
2172
.10.1016/j.solener.2010.08.014
5.
Martin
,
L.
,
Zarzalejo
,
L. F.
,
Polo
,
J.
,
Navarro
,
A.
,
Marchante
,
R.
, and
Cony
,
M.
,
2010
, “
Prediction of Global Solar Irradiance Based on Time Series Analysis: Application to Solar Thermal Power Plants Energy Production Planning
,”
Sol. Energy
,
84
(
10
), pp.
1772
1781
.10.1016/j.solener.2010.07.002
6.
Mellit
,
A.
, and
Massi Pavan
,
A.
,
2010
, “
A 24-h Forecast of Solar Irradiance Using Artificial Neural Network: Application for Performance Prediction of a Grid-Connected PV Plant in Trieste, Italy
,”
Sol. Energy
,
84
(
5
), pp.
807
821
.10.1016/j.solener.2010.02.006
7.
Voyant
,
C.
,
Randimivololona
,
P.
,
Nivet
,
M. L.
,
Poli
,
C.
, and
Muselli
,
M.
,
2013
, “
Twenty Four Hours Ahead Global Irradiation Forecasting Using Multi-Layer Perceptron
,”
Meteorol. Appl.
,
21
(
3
), pp.
644
655
10.1002/met.1387.
8.
Wang
,
F.
,
Mi
,
Z.
,
Su
,
S.
, and
Zhao
,
H.
,
2012
, “
Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters
,”
Energies
,
5
(
5
), pp.
1355
1370
.10.3390/en5051355
9.
Guarnieri
,
R. A.
,
Pereira
,
E. B.
, and
Chou
,
S. C.
,
2006
, “
Solar Radiation Forecast Using Artificial Neural Networks in South Brazil
,”
Proceedings of the 8th ICSHMO 2006
, Foz do Iguaçu, Brazil, Apr. 24–28, pp.
1777
1785
.
10.
Chen
,
C.
,
Duan
,
S.
,
Cai
,
T.
, and
Liu
,
B.
,
2011
, “
Online 24-h Solar Power Forecasting Based on Weather Type Classification Using Artificial Neural Network
,”
Sol. Energy
,
85
(
11
), pp.
2856
2870
.10.1016/j.solener.2011.08.027
11.
Lorenz
,
E.
,
Hurka
,
J.
,
Heinemann
,
D.
, and
Beyer
,
H. G.
,
2009
, “
Irradiance Forecasting for the Power Prediction of Grid Connected Photovoltaic Systems
,”
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
,
2
(
1
), pp.
2
10
.10.1109/JSTARS.2009.2020300
12.
Lorenz
,
E.
,
Remund
,
J.
,
Müller
,
S. C.
,
Traunmüller
,
W.
,
Steinmaurer
,
G.
,
Pozo
,
D.
,
Ruiz‐Arias
,
J. A.
,
Fanego
,
V. L.
,
Ramirez
,
L.
,
Romeo
,
M. G.
,
Kurz
,
C.
,
Pomares
,
L. M.
, and
Guerrero
,
C. G.
,
2009
, “
Benchmarking of Different Approaches to Forecast Solar Irradiance
,”
Proceedings of the 24th European Photovoltaic Solar Energy Conference
, Germany, Hamburg, Sept. 21–25, pp.
4199
4208
.
13.
Pedro
,
H. T. C.
, and
Coimbra
,
C. F. M.
,
2012
, “
Assessment of Forecasting Techniques for Solar Power Production With No Exogenous Inputs
,”
Sol. Energy
,
86
(
7
), pp.
2017
2028
.10.1016/j.solener.2012.04.004
14.
Lorenz
,
E.
,
Heinermann
,
D.
,
Wickramarathne
,
H.
,
Beyer
,
H.
, and
Bofinger
,
S.
,
2007
, “
Forecast of Ensemble Power Production by Grid-Connected PV Systems
,”
Proceedings of the 20th EUPVSEC
, Milano, Italy, Sept. 3–7.
15.
Dee
,
D. P.
,
Uppala
,
S. M.
,
Simmons
,
A. J.
,
Berrisford
,
P.
,
Poli
,
P.
,
Kobayashi
,
S.
,
Andrae
,
U.
,
Balmaseda
,
M. A.
,
Balsamo
,
G.
,
Bauer
,
P.
,
Bechtold
,
P.
,
Beljaars
,
A. C. M.
,
van de Berg
,
L.
,
Bidlot
,
J.
,
Bormann
,
N.
,
Delsol
,
C.
,
Dragani
,
R.
,
Fuentes
,
M.
,
Geer
,
A. J.
,
Haimberger
,
L.
,
Healy
,
S. B.
,
Hersbach
,
H.
,
Hólm
,
E. V.
,
Isaksen
,
L.
,
Kållberg
,
P.
,
Köhler
,
M.
,
Matricardi
,
M.
,
McNally
,
A. P.
,
Monge-Sanz
,
B. M.
,
Morcrette
,
J.-J.
,
Park
,
B.-K.
,
Peubey
,
C.
,
de Rosnay
,
P.
,
Tavolato
,
C.
,
Thépaut
,
J.-N.
, and
Vitart
,
F.
,
2011
, “
The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System
,”
Q. J. R. Meteorol. Soc.
,
137
(
656
), pp.
553
597
.10.1002/qj.828
16.
Spena
,
A.
,
Cornaro
,
C.
, and
Serafini
,
S.
,
2008
, “
Outdoor ESTER Test Facility for Advanced Technologies PV Modules
,” Proceedings of the 33rd
IEEE
Photovoltaic Specialists Conference
, San Diego, CA, May 11–16, pp.
1
5
10.1109/PVSC.2008.4922594.
17.
Zahumenský
,
I.
,
2004
,
Guidelines on Quality Control Procedures for Data From Automatic Weather Stations
,
World Meteorological Organization
,
Switzerland
.
18.
Marquez
,
R.
, and
Coimbra
,
C. F. M.
,
2011
, “
Forecasting of Global and Direct Solar Irradiance Using Stochastic Learning Methods, Ground Experiments and the NWS Database
,”
Sol. Energy
,
85
(
5
), pp.
746
756
.10.1016/j.solener.2011.01.007
19.
Beyer
,
H. G.
,
Polo Martinez
,
J.
,
Suri
,
M.
,
Torres
,
J. L.
,
Lorenz
,
E.
,
Müller
,
S. C.
,
Hoyer-Klick
,
C.
, and
Ineichen
,
P. D.
,
2009
, “
Report on Benchmarking of Radiation Products
,” MESoR, Report No. 038665, pp.
108
111
.
20.
Bishop
,
C. M.
,
1995
,
Neural Network for Pattern Recognition
,
Clarendon Press
,
Oxford, UK
, p.
290
.
You do not currently have access to this content.