Solar wafer/cell breakage depends on the combination of the stresses generated in the handling and the presence of structural defects such as cracks. Suction process is a common loading during silicon wafer handling. This paper presents a systematic static and dynamic analysis of the suction process. Optimum suction pad diameter and locations are obtained by minimizing the stress distribution under both static and dynamic loading, and the effect of the impact time on the crack driving force is also investigated in this optimum situation. The results show that the four pads configuration with diameter of 20 mm placed in a rhombus shape with 18 and 38 mm diagonal lengths yields lowest maximum principle stress among the cases analyzed. In the dynamic fracture analyses, the maximum J integral appears at 800 and 1400 μs for continued holding and unloading cases after reaching the maximum load, respectively. The J integral for the unloading cases are always smaller than the holding cases. It has been found that when the impact time is longer than 3 s and 5600 μs the dynamic fracture mechanics analysis of the suction impact process can be replaced by a static fracture mechanics analysis for the holding and unloading cases, respectively.

References

1.
Moller
,
H. J.
,
Funke
,
C.
,
Rinio
,
M.
, and
Scholz
,
S.
,
2005
, “
Multicrystalline Silicon for Solar Cells
,”
Thin Solid Films
,
487
(
1–2
), pp.
179
187
.10.1016/j.tsf.2005.01.061
2.
Möller
,
H. J.
,
2004
, “
Basic Mechanisms and Models of Multiwire Sawing
,”
Adv. Eng. Mater.
,
6
(
7
), pp.
501
513
.10.1002/adem.200400578
3.
Schoenfelder
,
S.
,
Ebert
,
M.
,
Landesberger
,
C.
,
Bock
,
K.
, and
Bagdahn
,
J.
,
2006
, “
Investigations of the Influence of Dicing Techniques on the Strength Properties of Thin Silicon
,”
Microelectron. Reliab.
,
47
(
2–3
), pp.
168
178
.10.1016/j.microrel.2006.09.002
4.
Rupnowski
,
P.
, and
Sopori
,
B.
,
2009
, “
Strength of Silicon Wafers: Fracture Mechanics Approach
,”
Int. J. Fract.
,
155
(
1
), pp.
67
74
.10.1007/s10704-009-9324-9
5.
Brun
,
X. F.
, and
Melkot
,
S. N.
,
2009
, “
Analysis of Stresses and Breakage of Crystalline Silicon Wafers During Handling and Transport
,”
Sol. Energy Mater. Sol. Cells
,
93
(
8
), pp.
1238
1247
.10.1016/j.solmat.2009.01.016
6.
Popovich
,
V. A.
,
Yunus
,
A.
,
Janssen
,
M.
,
Richardson
,
I. M.
, and
Bennett
,
I. J.
,
2010
, “
Effect of Silicon Solar Cell Processing Parameters and Crystallinity on Mechanical Strength
,”
Sol. Energy Mater. Sol. Cells
,
95
(
1
), pp.
97
100
.10.1016/j.solmat.2010.04.038
7.
Kotousov
,
A.
,
Lazzarin
,
P.
,
Berto
,
F.
, and
Harding
,
S.
,
2010
, “
Effect of the Thickness on Elastic Deformation and Quasi-Brittle Fracture of Plate Components
,”
Eng. Fract. Mech.
,
77
(
11
), pp.
1665
1681
.10.1016/j.engfracmech.2010.04.008
8.
Wortman
,
J. J.
, and
Evans
,
R. A.
,
1965
, “
Young's Modulus, Shear Modulus, and Poisson's Ration in Silicon and Germanium
,”
J. Appl. Phys.
,
36
(
1
), pp.
153
156
.10.1063/1.1713863
9.
Chao
,
C. C.
,
Chleboski
,
R.
,
Henderson
,
E. J.
,
Holmes
,
C. K.
, and
Kalejs
,
J. P.
,
1991
, “
Fracture Behavior of Silicon Cut With High Power Laser
,”
Proceedings of the Material Research Society Symposium
, Vol.
226
, MRS, Pittsburgh, PA, pp.
363
368
.
10.
Dhere
,
N. G.
,
2007
, “
Toward GW/Year Production of CIGS Within the Next Decade
,”
Sol. Energy Mater. Sol. Cells
,
91
(
15–16
), pp.
1376
1382
.10.1016/j.solmat.2007.04.003
11.
Dominguez
,
P. S.
, and
Fernandez
,
J. M.
,
2005
, “
Introduction of Thinner Monocrystalline Silicon Wafers in an Industrial Cell-Manufacturing Facility
,”
Proceedings of the 20th European Photovoltaic Solar Energy Conference
, Barcelona, Spain, June 6–10.
12.
Wang
,
P. A.
,
2006
, “
Industrial Challenges for Thin Wafer Manufacturing
,”
Proceedings of the Fourth World Conference on Photovoltaic Energy Conversion
, May 7–12, Waikoloa, HI, Vol. 1, IEEE, Piscataway, NJ, pp.
1179
1182
.
13.
Sopori
,
B.
,
Sheldon
,
P.
, and
Rupnowski
,
P.
,
2006
, “
Wafer Breakage Mechanism(s) and a Method for Screening ‘Problem Wafers'
,”
Proceedings of the 16th Workshop on Crystalline Silicon Solar Cells and Modules
, Aug. 6–9, pp.
129
138
.
14.
Kalthoff
,
J. F.
,
1985
, “
On the Measurement of Dynamic Fracture Toughness–A Review of Recent Work
,”
Int. J. Fract.
,
27
(
3–4
), pp.
277
298
.10.1007/BF00017973
15.
Freund
,
L. B.
,
1976
, “
Dynamic Crack Propagation
,”
The Mechanics of Fracture
,
American Society of Mechanical Engineers
,
New York
, pp.
105
134
.
16.
Freund
,
L. B.
,
1972
, “
Crack Propagation in an Elastic Solid Subjected to General Loading—I. Constant Rate of Extension
,”
J. Mech. Phys. Solids
,
20
(
3
), pp.
129
140
.10.1016/0022-5096(72)90006-3
17.
Freund
,
L. B.
,
1972
, “
Crack Propagation in an Elastic Solid Subjected to General Loading—II. Non-Uniform Rate of Extension
,”
J. Mech. Phys. Solids
,
20
(
3
), pp.
141
152
.10.1016/0022-5096(72)90007-5
18.
Freund
,
L. B.
,
1973
, “
Crack Propagation in an Elastic Solid Subjected to General Loading—III. Stress Wave Loading
,”
J. Mech. Phys. Solids
,
21
(
2
), pp.
47
61
.10.1016/0022-5096(73)90029-X
19.
Freund
,
L. B.
,
1990
,
Dynamic Fracture Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
20.
Kanninen
,
M. F.
, and
Polar
,
C. H.
,
1985
,
Advanced Fracture Mechanics
,
Oxford University Press
,
New York
.
21.
Rose
,
L. R. F.
,
1976
, “
Recent Theoretical and Experimental Results on Fast Brittle Fracture
,”
Int. J. Fract.
,
12
(
6
), pp.
779
813
.10.1007/BF00034620
22.
Atkinson
,
C.
, and
Eshlby
,
J. D.
,
1968
, “
The Flow of Energy Into the Tip of Moving Crack
,”
Int. J. Fract. Mech.
,
4
(
1
), pp.
3
8
.10.1007/BF00189137
23.
Sih
,
G. C.
,
1970
, “
Dynamic Aspects of Crack Propagation
,”
Inelastic Behavior of Solids
,
McGraw-Hill
,
New York
, pp.
607
633
.
24.
Freund
,
L. B.
,
1972
, “
Energy Flux Into the Tip of Extending Crack in Elastic Solid
,”
J. Elasticity
,
2
(
4
), pp.
341
349
.10.1007/BF00045718
25.
Moran
,
B.
, and
Shih
,
C. F.
,
1987
, “
A General Treatment of Crack Tip Contour Integrals
,”
Int. J. Fract.
,
35
(
4
), pp.
295
310
.10.1007/BF00276359
26.
Atluri
,
S. N.
,
1982
, “
Path-Independent Integrals in Finite Elasticity, With Body Force, Inertia, and Arbitrary Crack Face Conditions
,”
Eng. Fract. Mech.
,
16
(
3
), pp.
341
369
.10.1016/0013-7944(82)90113-8
27.
Kishimoto
,
K.
,
Aoki
,
S.
, and
Sakata
,
M.
,
1980
, “
On the Path-Independent J-integral
,”
Eng. Fract. Mech.
,
13
(4)
, pp.
841
850
.10.1016/0013-7944(80)90015-6
28.
Anderson
,
T. L.
,
1991
, “
Fracture Mechanics–Fundamentals and Applications
,”
CRC Press
,
Boca Raton, FL
.
29.
Chen
,
C. P.
, and
Leipold
,
M. H.
,
1980
, “
Fracture Toughness of Silicon
,”
Am. Ceram. Soc. Bull.
,
59
, pp.
469
472
.
30.
Claudia
,
F.
,
Eckehard
,
K.
,
Meinhard
,
K.
, and
Joachim
,
M. H.
,
2004
, “
Biaxial Fracture Test of Silicon Wafers
,”
Adv. Eng. Mater.
,
6
(
7
), pp.
596
598
.10.1002/adem.200400406
31.
Chao
,
C. C.
,
Chleboski
,
R.
,
Henderson
,
E. J.
,
Holmes
,
C. K.
,
Kalejs
,
J. P.
, and
Gross
,
T. S.
,
1991
, “
Fracture Behavior of Silicon Cut With High Power Laser
,”
Proc. Mater. Res. Soc. Symp.
,
226
, pp.
363
368
.10.1557/PROC-226-363
You do not currently have access to this content.