The design procedure for a 3 kWth prototype solar thermochemical reactor to implement isothermal redox cycling of ceria for CO2 splitting is presented. The reactor uses beds of mm-sized porous ceria particles contained in the annulus of concentric alumina tube assemblies that line the cylindrical wall of a solar cavity receiver. The porous particle beds provide high surface area for the heterogeneous reactions, rapid heat and mass transfer, and low pressure drop. Redox cycling is accomplished by alternating flows of inert sweep gas and CO2 through the bed. The gas flow rates and cycle step durations are selected by scaling the results from small-scale experiments. Thermal and thermo-mechanical models of the reactor and reactive element tubes are developed to predict the steady-state temperature and stress distributions for nominal operating conditions. The simulation results indicate that the target temperature of 1773 K will be reached in the prototype reactor and that the Mohr–Coulomb static factor of safety is above two everywhere in the tubes, indicating that thermo-mechanical stresses in the tubes remain acceptably low.

References

References
1.
Kodama
,
T.
, and
Gokon
,
N.
,
2007
, “
Thermochemical Cycles for High-Temperature Solar Hydrogen Production
,”
Chem. Rev.
,
107
(
10
), pp.
4048
4077
.10.1021/cr050188a
2.
Romero
,
M.
, and
Steinfeld
,
A.
,
2012
, “
Concentrating Solar Thermal Power and Thermochemical Fuels
,”
Energy Environ. Sci.
,
5
(
11
), pp.
9234
9245
.10.1039/c2ee21275g
3.
Nakamura
,
T.
,
1977
, “
Hydrogen Production From Water Utilizing Solar Heat at High Temperatures
,”
Sol. Energy
,
19
(
5
), pp.
467
475
.10.1016/0038-092X(77)90102-5
4.
Tamaura
,
Y.
,
Kojima
,
M.
,
Hasegawa
,
N.
,
Tsuji
,
M.
,
Ehrensberger
,
K.
, and
Steinfeld
,
A.
,
1997
, “
Solar Energy Conversion Into H2 Energy Using Ferrites
,”
J. Phys. IV
,
7
(C
1
), pp.
673
674
.10.1051/jp4:19971275
5.
Diver
,
R. B.
,
Miller
,
J. E.
,
Allendorf
,
M. D.
,
Siegel
,
N. P.
, and
Hogan
,
R. E.
,
2008
, “
Solar Thermochemical Water-Splitting Ferrite-Cycle Heat Engines
,”
ASME J. Sol. Energy Eng.
,
130
(
4
), p.
041001
.10.1115/1.2969781
6.
Palumbo
,
R.
,
Lédé
,
J.
,
Boutin
,
O.
,
Ricart
,
E. E.
,
Steinfeld
,
A.
,
Möller
,
S.
,
Weidenkaff
,
A.
,
Fletcher
,
E. A.
, and
Bielicki
,
J.
,
1998
, “
The Production of Zn From ZnO in a High- Temperature Solar Decomposition Quench Process—I. The Scientific Framework for the Process
,”
Chem. Eng. Sci.
,
53
(
14
), pp.
2503
2517
.10.1016/S0009-2509(98)00063-3
7.
Hamed
,
T. A.
,
Davidson
,
J. H.
, and
Stolzenburg
,
M.
,
2008
, “
Hydrolysis of Evaporated Zn in a Hot Wall Flow Reactor
,”
ASME J. Sol. Energy Eng.
,
130
(
4
), p.
041010
.10.1115/1.2969808
8.
Hamed
,
T. A.
,
Venstrom
,
L.
,
Alshare
,
A.
,
Brülhart
,
M.
, and
Davidson
,
J. H.
,
2009
, “
Study of a Quench Device for the Synthesis and Hydrolysis of Zn Nanoparticles: Modeling and Experiments
,”
ASME J. Sol. Energy Eng.
,
131
(
3
), p.
031018
.10.1115/1.3142825
9.
Dombrovsky
,
L.
,
Schunk
,
L.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2009
, “
An Ablation Model for the Thermal Decomposition of Porous Zinc Oxide Layer Heated by Concentrated Solar Radiation
,”
Int. J. Heat Mass Transf.
,
52
(
11–12
), pp.
2444
2452
.10.1016/j.ijheatmasstransfer.2008.12.025
10.
Schunk
,
L. O.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
,
2009
, “
Heat Transfer Model of a Solar Receiver–Reactor for the Thermal Dissociation of ZnO—Experimental Validation at 10 kW and Scale-Up to 1 MW
,”
Chem. Eng. J.
,
150
(
2–3
), pp.
502
508
.10.1016/j.cej.2009.03.012
11.
Venstrom
,
L. J.
, and
Davidson
,
J. H.
,
2013
, “
The Kinetics of the Heterogeneous Oxidation of Zinc Vapor by Carbon Dioxide
,”
Chem. Eng. Sci.
,
93
, pp.
163
172
.10.1016/j.ces.2013.01.038
12.
Abanades
,
S.
, and
Flamant
,
G.
,
2006
, “
Thermochemical Hydrogen Production From a Two-Step Solar-Driven Water-Splitting Cycle Based on Cerium Oxides
,”
Sol. Energy
,
80
(
12
), pp.
1611
1623
.10.1016/j.solener.2005.12.005
13.
Chueh
,
W. C.
, and
Haile
,
S. M.
,
2009
, “
Ceria as a Thermochemical Reaction Medium for Selectively Generating Syngas or Methane From H2O and CO2
,”
ChemSusChem
,
2
(
8
), pp.
735
739
.10.1002/cssc.200900138
14.
Chueh
,
W. C.
, and
Haile
,
S. M.
,
2010
, “
A Thermochemical Study of Ceria: Exploiting an Old Material for New Modes of Energy Conversion and CO2 Mitigation
,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
,
368
(
1923
), pp.
3269
3294
.10.1098/rsta.2010.0114
15.
Venstrom
,
L. J.
,
Petkovich
,
N.
,
Rudisill
,
S.
,
Stein
,
A.
, and
Davidson
,
J. H.
,
2012
, “
The Effects of Morphology on the Oxidation of Ceria by Water and Carbon Dioxide
,”
ASME J. Sol. Energy Eng.
,
134
(
1
), p.
011005
.10.1115/1.4005119
16.
Rudisill
,
S. G.
,
Venstrom
,
L. J.
,
Petkovich
,
N. D.
,
Quan
,
T.
,
Hein
,
N.
,
Boman
,
D. B.
,
Davidson
,
J. H.
, and
Stein
,
A.
,
2013
, “
Enhanced Oxidation Kinetics in Thermochemical Cycling of CeO2 Through Templated Porosity
,”
J. Phys. Chem. C
,
117
(
4
), pp.
1692
1700
.10.1021/jp309247c
17.
Petkovich
,
N. D.
,
Rudisill
,
S. G.
,
Venstrom
,
L. J.
,
Boman
,
D. B.
,
Davidson
,
J. H.
, and
Stein
,
A.
,
2011
, “
Control of Heterogeneity in Nanostructured Ce1–xZrxO2 Binary Oxides for Enhanced Thermal Stability and Water Splitting Activity
,”
J. Phys. Chem. C
,
115
(
43
), pp.
21022
21033
.10.1021/jp2071315
18.
Scheffe
,
J. R.
, and
Steinfeld
,
A.
,
2012
, “
Thermodynamic Analysis of Cerium-Based Oxides for Solar Thermochemical Fuel Production
,”
Energy Fuels
,
26
(
3
), pp.
1928
1936
.10.1021/ef201875v
19.
Scheffe
,
J.
,
Jacot
,
R.
, and
Patzke
,
G.
,
2013
, “
Synthesis, Characterization and Thermochemical Redox Performance of Hf, Zr and Sc Doped Ceria for Splitting CO2
,”
J. Phys. Chem. C
,
117
(
46
), pp.
24104
24114
.10.1021/jp4050572
20.
McDaniel
,
A. H.
,
Miller
,
E. C.
,
Arifin
,
D.
,
Ambrosini
,
A.
,
Coker
,
E. N.
,
O'Hayre
,
R.
,
Chueh
,
W. C.
, and
Tong
,
J.
,
2013
, “
Sr- and Mn-Doped LaAlO3−δ for Solar Thermochemical H2 and CO Production
,”
Energy Environ. Sci.
,
6
, pp.
2424
2428
.10.1039/c3ee41372a
21.
Chueh
,
W. C.
,
Falter
,
C.
,
Abbott
,
M.
,
Scipio
,
D.
,
Furler
,
P.
,
Haile
,
S. M.
, and
Steinfeld
,
A.
,
2010
, “
High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria
,”
Science
,
330
(
6012
), pp.
1797
1801
.10.1126/science.1197834
22.
Panlener
,
R. J.
,
Blumenthal
,
R. N.
, and
Garnier
,
J. E.
,
1975
, “
A Thermodynamic Study of Nonstoichiometric Cerium Dioxide
,”
J. Phys. Chem. Solids
,
36
(
11
), pp.
1213
1222
.10.1016/0022-3697(75)90192-4
23.
Furler
,
P.
,
Scheffe
,
J. R.
, and
Steinfeld
,
A.
,
2012
, “
Syngas Production by Simultaneous Splitting of H2O and CO2 via Ceria Redox Reactions in a High-Temperature Solar Reactor
,”
Energy Environ. Sci.
,
5
(
3
), pp.
6098
6103
.10.1039/c1ee02620h
24.
Furler
,
P.
,
Scheffe
,
J.
,
Gorbar
,
M.
,
Moes
,
L.
,
Vogt
,
U.
, and
Steinfeld
,
A.
,
2012
, “
Solar Thermochemical CO2 Splitting Utilizing a Reticulated Porous Ceria Redox System
,”
Energy Fuels
,
26
(
11
), pp.
7051
7059
.10.1021/ef3013757
25.
Ermanoski
,
I.
,
Siegel
,
N. P.
, and
Stechel
,
E. B.
,
2013
, “
A New Reactor Concept for Efficient Solar-Thermochemical Fuel Production
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031002
.10.1115/1.4023356
26.
Diver
,
R. B.
,
Miller
,
J. E.
,
Siegel
,
N. P.
, and
Moss
,
T. A.
,
2010
, “
Testing of a CR5 Solar Thermochemical Heat Engine Prototype
,”
ASME
Paper No. ES2010-90093.10.1115/ES2010-90093
27.
Lapp
,
J.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2012
, “
Efficiency of Two-Step Solar Thermochemical Non-Stoichiometric Redox Cycles With Heat Recovery
,”
Energy
,
37
(
1
), pp.
591
600
.10.1016/j.energy.2011.10.045
28.
Bader
,
R.
,
Venstrom
,
L. J.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2013
, “
Thermodynamic Analysis of Isothermal Redox Cycling of Ceria for Solar Fuel Production
,”
Energy Fuels
,
27
(
9
), pp.
5533
5544
.10.1021/ef400132d
29.
Ermanoski
,
I.
,
Miller
,
J. E.
, and
Allendorf
,
M. D.
,
2014
, “
Efficiency Maximization in Solar-Thermochemical Fuel Production: Challenging the Concept of Isothermal Water Splitting
,”
Phys. Chem. Chem. Phys.
, pp.
8418
8427
.10.1039/c4cp00978a
30.
Agrafiotis
,
C.
,
Roeb
,
M.
,
Konstandopoulos
,
A. G.
,
Nalbandian
,
L.
,
Zaspalis
,
V. T.
,
Sattler
,
C.
,
Stobbe
,
P.
, and
Steele
,
A. M.
,
2005
, “
Solar Water Splitting for Hydrogen Production With Monolithic Reactors
,”
Sol. Energy
,
79
(
4
), pp.
409
421
.10.1016/j.solener.2005.02.026
31.
Lapp
,
J.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2013
, “
Heat Transfer Analysis of a Solid-Solid Heat Recuperation System for Solar-Driven Nonstoichiometric Redox Cycles
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031004
.10.1115/1.4023357
32.
Lapp
,
J.
, and
Lipiński
,
W.
,
2014
, “
Transient Three-Dimensional Heat Transfer Model of a Solar Thermochemical Reactor for H2O and CO2 Splitting via Non-Stoichiometric Ceria Redox Cycling
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031006
.10.1115/1.4026465
33.
Lipiński
,
W.
,
Davidson
,
J. H.
, and
Chase
,
T. R.
,
2012
, “
Thermochemical Reactor Systems and Methods
,” Patent No. WO2013119303 A2.
34.
Lichty
,
P.
,
Muhich
,
C.
,
Arifin
,
D.
,
Weimer
,
A. W.
, and
Steinfeld
,
A.
,
2013
, “
Methods and Apparatus for Gas-Phase Reduction/Oxidation Processes
,” U.S. patent application 20130266502 A1.
35.
Banerjee
,
A.
,
Bala Chandran
,
R.
, and
Davidson
,
J. H.
,
2014
, “
Experimental Investigation of a Reticulated Porous Alumina Heat Exchanger for High Temperature Gas Heat Recovery
,”
Appl. Therm. Eng.
(in press).10.1016/j.applthermaleng.2014.10.033
36.
Haussener
,
S.
, and
Steinfeld
,
A.
,
2012
, “
Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation
,”
Materials (Basel)
,
5
(
1
), pp.
192
209
.10.3390/ma5010192
37.
Wade
,
A.
,
2010
, “
Natural Convection in Water-Saturated Metal Foam With a Superposed Fluid Layer
,” M.S. thesis, University of Minnesota, Minneapolis, MN.
38.
Ergun
,
S.
, and
Orning
,
A. A.
,
1949
, “
Fluid Flow Through Randomly Packed Columns and Fluidized Beds
,”
Ind. Eng. Chem.
,
41
(
6
), pp.
1179
1184
.10.1021/ie50474a011
39.
Chekhovskoy
,
V. Y.
, and
Stavrovsky
,
G. I.
,
1969
, “
Thermal Conductivity of Cerium Dioxide
,”
Ninth Conference on Thermal Conductivity
, Iowa State University, pp.
295
298
.
40.
Yaws
,
C.
,
2010
,
Transport Properties of Chemicals and Hydrocarbons
,
Knovel
,
New York
.
41.
Modest
,
M. F.
,
2003
, “
Approximate Solution Methods for One-Dimensional Media
,”
Radiative Heat Transfer
,
Academic Press
,
San Diego, CA
, pp.
451
456
.10.1016/B978-012503163-9/50015-1
42.
Oh
,
T.-S.
,
Tokpanov
,
Y. S.
,
Hao
,
Y.
,
Jung
,
W.
, and
Haile
,
S. M.
,
2012
, “
Determination of Optical and Microstructural Parameters of Ceria Films
,”
J. Appl. Phys.
,
112
(
10
), p.
103535
.10.1063/1.4766928
43.
Ganesan
,
K.
, and
Lipiński
,
W.
,
2011
, “
Experimental Determination of Spectral Transmittance of Porous Cerium Dioxide in the Range 900–1700 nm
,”
ASME J. Heat Transfer
,
133
(
10
), p.
104501
.10.1115/1.4003970
44.
Petrasch
,
J.
,
Wyss
,
P.
, and
Steinfeld
,
A.
,
2007
, “
Tomography-Based Monte Carlo Determination of Radiative Properties of Reticulate Porous Ceramics
,”
J. Quant. Spectrosc. Radiat. Transf.
,
105
(
2
), pp.
180
197
.10.1016/j.jqsrt.2006.11.002
45.
Van de Hulst
,
H. C.
,
2012
,
Light Scattering by Small Particles
,
Courier Dover Publications
,
New York
.
46.
Kamiuto
,
K.
,
1990
, “
Correlated Radiative Transfer in Packed-Sphere Systems
,”
J. Quant. Spectrosc. Radiat. Transf.
,
43
(
1
), pp.
39
43
.10.1016/0022-4073(90)90063-C
47.
Venstrom
,
L. J.
,
Smith
,
R. M. De
,
Hao
,
Y.
,
Haile
,
S. M.
, and
Davidson
,
J. H.
,
2014
, “
Efficient Splitting of CO2 in an Isothermal Redox Cycle Based on Ceria
,”
Energy Fuels
,
28
(
4
), pp.
2732
2742
.10.1021/ef402492e
48.
Millot
,
F.
, and
Mierry
,
P. D.
,
1985
, “
A New Method for the Study of Chemical Diffusion in Oxides With Application to Cerium Oxide CeO2−x
,”
J. Phys. Chem. Solids
,
46
(
7
), pp.
797
801
.10.1016/0022-3697(85)90003-4
49.
Hirsch
,
D.
,
2004
, “
Solar Hydrogen Production by Thermal Decomposition of Natural Gas Using a Vortex-Flow Reactor
,”
Int. J. Hydrogen Energy
,
29
(
1
), pp.
47
55
.10.1016/S0360-3199(03)00048-X
50.
Charvin
,
P.
,
Abanades
,
S.
,
Neveu
,
P.
,
Lemont
,
F.
, and
Flamant
,
G.
,
2008
, “
Dynamic Modeling of a Volumetric Solar Reactor for Volatile Metal Oxide Reduction
,”
Chem. Eng. Res. Des.
,
86
(
11
), pp.
1216
1222
.10.1016/j.cherd.2008.05.009
51.
Charvin
,
P.
,
Abanades
,
S.
,
Lemort
,
F.
, and
Flamant
,
G.
,
2008
, “
Analysis of Solar Chemical Processes for Hydrogen Production From Water Splitting Thermochemical Cycles
,”
Energy Convers. Manag.
,
49
(
6
), pp.
1547
1556
.10.1016/j.enconman.2007.12.011
52.
Bala Chandran
,
R.
,
Banerjee
,
A.
, and
Davidson
,
J. H.
,
2014
, “
Predicted Performance of a Ceramic Foam Gas Phase Heat Recuperator for a Solar Thermochemical Reactor
,”
ASME
Paper No. ES2014-6413.10.1115/ES2014-6413
53.
Krueger
,
K. R.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2011
, “
Design of a New 45 kWe High-Flux Solar Simulator for High-Temperature Solar Thermal and Thermochemical Research
,”
ASME J. Sol. Energy Eng.
,
133
(
1
), p.
011013
.10.1115/1.4003298
54.
Krueger
,
K. R.
,
Lipiński
,
W.
, and
Davidson
,
J. H.
,
2013
, “
Operational Performance of the University of Minnesota 45 kWe High-Flux Solar Simulator
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
044501
.10.1115/1.4023595
55.
Alfano
,
G.
,
1972
, “
Apparent Thermal Emittance of Cylindrical Enclosures With and Without Diaphragms
,”
Int. J. Heat Mass Transf.
,
15
(
12
), pp.
2671
2674
.10.1016/0017-9310(72)90156-1
56.
Häring
,
H. W.
,
2008
,
Industrial Gases Processing
,
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim
.10.1002/9783527621248
57.
Siegel
,
R.
, and
Howell
,
J. R.
,
2002
,
Thermal Radiation Heat Transfer
,
Taylor & Francis
,
New York
.
58.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
,
1976
, “
Correlating Equations for Natural Convection Heat Transfer Between Horizontal Circular Cylinders
,”
Int. J. Heat Mass Transf.
,
19
(
10
), pp.
1127
1134
.10.1016/0017-9310(76)90145-9
59.
Leibfried
,
U.
, and
Ortjohann
,
J.
,
1995
, “
Convective Heat Loss From Upward and Downward-Facing Cavity Solar Receivers: Measurements and Calculations
,”
ASME J. Sol. Energy Eng.
,
117
(
2
), pp.
75
84
.10.1115/1.2870873
60.
“Alumina Insulation Type ZAL-15 & ZAL-15AA.”
61.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Horizontal Cylinder
,”
Int. J. Heat Mass Transf.
,
18
(
9
), pp.
1049
1053
.10.1016/0017-9310(75)90222-7
62.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate
,”
Int. J. Heat Mass Transf.
,
18
(
11
), pp.
1323
1329
.10.1016/0017-9310(75)90243-4
63.
Ganesan
,
K.
,
Dombrovsky
,
L. A.
, and
Lipiński
,
W.
,
2013
, “
Visible and Near-Infrared Optical Properties of Ceria Ceramics
,”
Infrared Phys. Technol.
,
57
, pp.
101
109
.10.1016/j.infrared.2012.12.040
64.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
New York
.10.1007/978-1-4612-4254-3
65.
Wakao
,
N.
, and
Kaguei
,
S.
,
1982
,
Heat and Mass Transfer in Packed Beds
,
Gordon and Breach Science Publishers
,
New York
.
66.
Binnewies
,
M.
, and
Milke
,
E.
,
2002
,
Thermochemical Data of Elements and Compounds
,
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim
.10.1002/9783527618347
67.
Lingart
,
Y. K.
,
Petrov
,
V. A.
, and
Tikhonova
,
N. A.
,
1983
, “
Optical Properties of Leucosapphire at High Temperatures. I. Translucent Region
,”
High Temp.
,
20
(
5
), pp.
706
713
.
68.
Apetz
,
R.
, and
Bruggen
,
M. P. B.
,
2003
, “
Transparent Alumina: A Light- Scattering Model
,”
J. Am. Ceram. Soc.
,
86
(
3
), pp.
480
486
.10.1111/j.1151-2916.2003.tb03325.x
69.
“AD-998 Alumina Material Properties.”
70.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
,
Washington
.
71.
ANSYS® Academic Research
,
2011
,
Ansys Fluent Users Guide
, Release 14.0, pp.
1715
1762
.
72.
ANSYS® Academic Research
,
2011
,
Ansys Fluent User Defined Functions Guide
, Release 14.0.
73.
Juvinall
,
R. C.
, and
Marshek
,
K. M.
,
2006
,
Fundamentals of Machine Component Design
,
John Wiley & Sons Inc.
,
New York
.
74.
ANSYS® Academic Research
, Release 14.0.
75.
Munro
,
R. G.
,
1997
, “
Evaluated Material Properties for a Sintered α-Alumina
,”
J. Am. Ceram. Soc.
,
80
(
8
), pp.
1919
1928
.10.1111/j.1151-2916.1997.tb03074.x
You do not currently have access to this content.