In this study, Reynolds-averaged Navier–Stokes (RANS) simulations are performed using the k-ε and k-ω shear stress transport (SST) turbulence closure schemes to investigate the interactions of horizontal-axis wind turbine (HAWT) models in the neutrally stratified atmospheric boundary layer (ABL). A comparative study of actuator disk, actuator line, and full rotor models of the National Renewable Energy Laboratory (NREL) 5 MW reference turbine is presented. The open-source computational fluid dynamics (CFD) code openfoam 2.1.0 and the commercial software ansysfluent 13.0 are used for simulations. Single turbine models are analyzed for turbulent structures and wake resolution in the downstream region. To investigate the influence of the incident wind field on very large turbine blades, a high-resolution full rotor simulation is carried out for a single turbine to determine blade pressure distributions. Finally, simulations are performed for two inline turbines spaced 5 diameters (5D) apart. The research presented in this study provides an intercomparison of three dominant HAWT models operating at rated conditions in a neutral ABL using an RANS framework. Furthermore, the pressure distributions of the highly resolved full rotor model (FRM) will be useful for future aeroelastic structural analysis of anisotropic composite blade materials.

References

References
1.
Ball
,
J.
,
2011
, “
Wind Power Hits a Trough
,” Wall St. J., Apr. 5, http://online.wsj.com/news/articles/SB10001424052748704629104576190812458488694?mod=_newsreel_3
2.
USDOE
,
2008
, “
20 Percent Wind Energy by 2030
,” United States Department of Energy, Technical Report No. DOE/GO-102008-2567.
3.
Meyers
,
J.
, and
Meneveau
,
C.
,
2012
, “
Optimal Turbine Spacing in Fully Developed Wind Farm Boundary Layers
,”
Wind Energy
,
15
(
2
), pp.
305
317
.10.1002/we.469
4.
Porté-Agel
,
F.
,
Wu
,
Y.-T.
,
Lu
,
H.
, and
Conzemius
,
R. J.
,
2011
, “
Large-Eddy Simulation of Atmospheric Boundary Layer Flow Through Wind Turbines and Wind Farms
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
4
), pp.
154
168
.10.1016/j.jweia.2011.01.011
5.
Calaf
,
M.
,
Meneveau
,
C.
, and
Meyers
,
J.
,
2010
, “
Large Eddy Simulation Study of Fully Developed Wind-Turbine Array Boundary Layers
,”
Phys. Fluids
,
22
(
1
), p.
015110
10.1063/1.3291077
6.
Churchfield
,
M. J.
,
Moriarty
,
P. J.
,
Vijayakumar
,
G.
, and
Brasseur
,
J. G.
,
2010
, “
Wind Energy-Related Atmospheric Boundary Layer Large-Eddy Simulation Using OpenFOAM
,” National Renewable Energy Laboratory (NREL), Technical Report No. NREL/CP-500-48905.
7.
Sørensen
,
J. N.
, and
Shen
,
W. Z.
,
2002
, “
Numerical Modeling of Turbine Wakes
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
393
399
.10.1115/1.1471361
8.
Jones
,
W.
, and
Launder
,
B.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
301
314
.10.1016/0017-9310(72)90076-2
9.
Parente
,
A.
,
Gorlé
,
C.
,
Beeck
,
J. v.
, and
Benocci
,
C.
,
2011
, “
Improved k-ε Model and Wall Function Formulation for the RANS Simulation of ABL Flows
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
4
), pp.
267
278
.10.1016/j.jweia.2010.12.017
10.
Vermeer
,
L. J.
,
Sørensen
,
J. N.
, and
Crespo
,
A.
,
2003
, “
Wind Turbine Wake Aerodynamics
,”
Prog. Aerosp. Sci.
,
39
(
67
), pp.
467
510
.10.1016/S0376-0421(03)00078-2
11.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
12.
Wilcox
,
D. C.
,
1988
, “
Re-Assessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.10.2514/3.10041
13.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scoot
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” National Renewable Energy Laboratory (NREL), Technical Report No. NREL/TP-500-38060.
14.
Sørensen
,
J. N.
, and
Myken
,
A.
,
1992
, “
Unsteady Actuator Disc Model for Horizontal Axis Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
39
(
1–3
), pp.
139
149
.10.1016/0167-6105(92)90540-Q
15.
Madsen
,
H. A.
,
1996
, “
A CFD Analysis for the Actuator Disc Flow Compared With Momentum Theory Results
,”
Proceedings of the 10th IEA Symposium of Aerodynamics and Wind Turbines
,
Edinburgh, UK
, Dec. 16–17, pp.
109
124
.
16.
Balogh
,
M.
,
Parente
,
A.
, and
Benocci
,
C.
,
2012
, “
RANS Simulation of ABL Flow Over Complex Terrains Applying an Enhanced k-ε Model and Wall Function Formulation: Implementation and Comparison for Fluent and OpenFOAM
,”
J. Wind Eng. Ind. Aerodyn.
,
104–106
, pp.
360
368
.10.1016/j.jweia.2012.02.023
17.
Parente
,
A.
,
Gorlé
,
C.
,
van Beeck
,
J.
, and
Benocci
,
C.
,
2011
, “
A Comprehensive Modelling Approach for the Neutral Atmospheric Boundary Layer: Consistent Inflow Conditions, Wall Functions and Turbulence Model
,”
Boundary-Layer Meteorol.
,
140
(
3
), pp.
411
428
.10.1007/s10546-011-9621-5
18.
Kasmi
,
A. E.
, and
Masson
,
C.
,
2008
, “
An Extended k-ε Model for Turbulent Flow Through Horizontal-Axis Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
1
), pp.
103
122
.10.1016/j.jweia.2007.03.007
19.
Rodi
,
W.
,
1987
, “
Examples of Calculation Methods for Flow and Mixing in Stratified Fluids
,”
J. Geophys. Res.: Oceans
,
92
(
C5
), pp.
5305
5328
.10.1029/JC092iC05p05305
20.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
21.
Crespo
,
A.
,
Manuel
,
F.
,
Moreno
,
D.
,
Fraga
,
E.
, and
Hernández
,
J.
,
1985
, “
Numerical Analysis of Wind Turbine Wakes
,”
Proceedings of the Delphi Workshop on Wind Energy Applications
,
Greece
, May 20–22, pp.
15
25
.
22.
Gorlé
,
C.
,
Beeck
,
J. v.
,
Rambaud
,
P.
, and
Tendeloo
,
G. V.
,
2009
, “
CFD Modelling of Small Particle Dispersion: The Influence of the Turbulence Kinetic Energy in the Atmospheric Boundary Layer
,”
Atmos. Environ.
,
43
(
3
), pp.
673
681
.10.1016/j.atmosenv.2008.09.060
23.
Wilcox
,
D. C.
,
1993
,
Turbulence Modelling for CFD
,
DCW Industries Inc.
,
La Canada Fltrdg, CA
.
24.
Hargreaves
,
D. M.
, and
Wright
,
N. G.
,
2007
, “
On the Use of the k–ε Model in Commercial CFD Software to Model the Neutral Atmospheric Boundary Layer
,”
J. Wind Eng. Ind. Aerodyn.
,
95
(
5
), pp.
355
369
.10.1016/j.jweia.2006.08.002
25.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comp. Fluid Dyn.
,
23
(
4
), pp.
305
316
.10.1080/10618560902773387
26.
Tossas
,
L. A. M.
, and
Leonardi
,
S.
,
2013
, “
Wind Turbine Modeling for Computational Fluid Dynamics
,” National Renewable Energy Laboratory (NREL), Technical Report No. NREL/SR-5000-55054.
27.
Sørensen
,
N. N.
, and
Johansen
,
J.
,
2007
, “
Upwind, Aerodynamics and Aero-Elasticity, Rotor Aerodynamics in Atmospheric Shear Conditions
,”
EWEA, 2007 European Wind Energy Conference and Exhibition
,
Milan, Italy
, May 7–10.
28.
OpenCFD
,
2014
, OpenFOAM: The Open Source CFD Toolbox–User Guide.
29.
ANSYS
,
2010
, ANSYS FLUENT User's Guide, Canonsburg, PA.
30.
Richards
,
P. J.
, and
Hoxey
,
R. P.
,
1993
, “
Appropriate Boundary Conditions for Computations Wind Engineering Models Using the k-ε Turbulence Model
,”
J. Wind Eng. Ind. Aerodyn.
,
46–47
, pp.
145
153
.10.1016/0167-6105(93)90124-7
31.
Yang
,
Y.
,
Gu
,
M.
,
Chen
,
S.
, and
Jin
,
X.
,
2009
, “
New Inflow Boundary Conditions for Modelling the Neutral Equilibrium Atmospheric Boundary Layer in Computational Wind Engineering
,”
J. Wind Eng. Ind. Aerodyn.
,
97
(
2
), pp.
88
95
.10.1016/j.jweia.2008.12.001
32.
Spalart
,
P. R.
, and
Rumsey
,
C. L.
,
2007
, “
Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations
,”
AIAA J.
,
45
(
10
), pp.
2544
2553
.10.2514/1.29373
33.
Ferziger
,
J. H.
, and
Milovan
,
P.
,
1996
,
Computational Methods for Fluid Dynamics
,
Springer
,
Berlin
.
34.
Sørensen
,
J. N.
, and
Kock
,
C. W.
,
1995
, “
A Model for Unsteady Rotor Aerodynamics
,”
J. Wind Eng. Ind. Aerodyn.
,
58
(
3
), pp.
259
275
.10.1016/0167-6105(95)00027-5
35.
Churchfield
,
M. J.
,
Lee
,
S.
,
Moriarty
,
P. J.
,
Martinez
,
L. A.
,
Leonardi
,
S.
,
Vijayakumar
,
G.
, and
Brasseur
,
J. G.
,
2012
, “
Large-Eddy Simulation of Wind Plant Aerodynamics
,” National Renewable Energy Laboratory (NREL), Technical Report No. NREL/CP-500-53554.
36.
Martinez
,
L. A.
,
Leonardi
,
S.
,
Churchfield
,
M. J.
, and
Moriarty
,
P. J.
,
2012
, “
A Comparison of Actuator Disc and Actuator Line Wind Turbine Models and Best Practices for Their Use
,”
AIAA Paper No. 2012-0900
.10.2514/6.2012-900
37.
Stovall
,
T.
,
Pawlas
,
G.
, and
Moriarty
,
P. J.
,
2010
, “
Wind Farm Wake Simulations in OpenFOAM
,”
AIAA
Paper No. 2010-825. 10.2514/6.2010-825
38.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Akkerman
,
I.
,
Wright
,
S.
,
Takizawa
,
K.
,
Henicke
,
B.
,
Spielman
,
T.
, and
Tezduyar
,
T. E.
,
2011
, “
3D Simulation of Wind Turbine Rotors at Full Scale. Part I: Geometry Modeling and Aerodynamics
,”
Int. J. Numer. Methods Fluids
,
65
(
1–3
), pp.
207
235
.10.1002/fld.2400
39.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Kiendl
,
J.
,
Wüchner
,
R.
, and
Bletzinger
,
K.-U.
,
2011
, “
3D Simulation of Wind Turbine Rotors at Full Scale. Part II: Fluid-Structure Interaction Modeling With Composite Blades
,”
Int. J. Numer. Methods Fluids
,
65
(
1–3
), pp.
236
253
.10.1002/fld.2454
You do not currently have access to this content.