Small wind turbines are a promising technology that can provide renewable power to rural and remote communities. In order to increase the efficiency and competitiveness of small wind technology, it is necessary to maximize the wind energy capture and to prolong the turbine system life. Accordingly, this paper presents an integrated development framework that optimizes component design goals, including durability and minimal gearbox mass, with the control objective of producing maximum energy over the turbine system’s 20-yr life. This study focuses on the wind turbine gearbox, which plays a critical role in achieving high efficiency and extended system life. A variable ratio gearbox (VRG) previously developed by the authors is used as an example to demonstrate the methodology. In this paper, an algorithm developed for optimizing the VRG gear ratio is integrated with the design selection of commercially available gears, which will be used to construct the VRG gearbox. The proposed multi-objective framework is capable of identifying the optimal gearsets based on a trade-off between selecting gearsets that maximize wind turbine efficiency and choosing gearsets that best meet the design requirements.

References

References
1.
Hernández-Escobedo
,
Q.
,
Saldaña-Flores
,
R.
,
Rodríguez-García
,
E. R.
, and
Manzano-Agugliaro
,
F.
,
2014
, “
Wind Energy Resource in Northern Mexico
,”
Renewable Sustainable Energy Rev.
,
32
, pp.
890
914
.10.1016/j.rser.2014.01.043
2.
Goodfellow
,
D.
,
1986
, “
Variable Speed Operation of Wind Turbines
,” Ph.D. dissertation, University of Leicester, Leicester, UK.
3.
Muljadi
,
E.
, and
Butterfield
,
C. P.
,
2001
, “
Pitch-Controlled Variable-Speed Wind Turbine Generation
,”
IEEE Trans. Ind. Appl.
37
(
1
), pp.
240
246
.10.1109/28.903156
4.
Johnson
,
K. E.
,
Pao
,
L. Y.
,
Balas
,
M. J.
, and
Fingersh
,
L. J.
,
2006
, “
Control of Variable-Speed Wind Turbines: Standard and Adaptive Techniques for Maximizing Energy Capture
,”
IEEE Control Syst.
,
26
(
3
), pp.
70
81
.10.1109/MCS.2006.1636311
5.
Bolinger
,
M.
,
2009
, “
2008 Wind Technologies Market Report
,” Lawrence Berkeley National Laboratory/Wind and Hydropower Technologies Program, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, Berkeley, CA, Report No. TP-6A2-46026; DOE/GO-102009-2868.
6.
USDOE
,
2009
, “
Wind Powering America: Program Areas,
” U.S. Department of Energy, Washington, DC, Report No. DOE/GO-102009-2556.
7.
Hall
,
J. F.
, and
Chen
,
D.
,
2013
, “
Dynamic Optimization of Drivetrain Gear Ratio to Maximize Wind Turbine Power Generation—Part 1: System Model and Control Framework
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
1
), p.
011016
.10.1115/1.4006882
8.
Hall
,
J. F.
, and
Chen
,
D.
,
2013
, “
Dynamic Optimization of Drivetrain Gear Ratio to Maximize Wind Turbine Power Generation, Part 2: Control Design
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
1
), p.
011017
.10.1115/1.4006886
9.
Hall
,
J. F.
,
Mecklenborg
,
C. A.
,
Chen
,
D.
, and
Pratap
,
S. B.
,
2011
, “
Wind Energy Conversion With a Variable-Ratio Gearbox: Design and Analysis
,”
Renewable Energy
,
36
(
3
), pp.
1075
1080
.10.1016/j.renene.2010.08.037
10.
Shaltout
,
M. L.
,
Hall
,
J. F.
, and
Chen
,
D.
,
2014
, “
Optimal Control of a Wind Turbine With a Variable Ratio Gearbox for Maximum Energy Capture and Prolonged Gear Life
,”
ASME J. Solar Energy Eng.
,
136
(
3
), p.
031007
.10.1115/1.4026676
11.
Bhowmik
,
S.
,
Spee
,
R.
, and
Enslin
,
J. H.
,
1999
, “
Performance Optimization for Doubly Fed Wind Power Generation Systems
,”
IEEE Trans. Ind. Appl.
,
35
(
4
), pp.
949
958
.10.1109/28.777205
12.
Koutroulis
,
E.
, and
Kalaitzakis
,
K.
,
2006
, “
Design of a Maximum Power Tracking System for Wind-Energy-Conversion Applications
,”
IEEE Trans. Ind. Electron.
,
53
(
2
), pp.
486
494
.10.1109/TIE.2006.870658
13.
Le-peng
,
S.
, and
Da-yong
,
H.
,
2010
, “
Variable Universe Fuzzy Control of Maximizing the Wind Engergy for a DFIG
,”
3rd IEEE International Conference on Computer Science and Information Technology
(
ICCSIT
),
Chengdu, China, July 9–11
, pp.
668
671
.10.1109/ICCSIT.2010.5565112
14.
Evangelista
,
C.
,
Puleston
,
P.
, and
Valenciaga
,
F.
,
2010
, “
A Simple Robust Controller for Power Maximization of a Variable-Speed Wind Turbine
,”
Int. J. Energy Res.
,
34
(
10
), pp.
924
932
.10.1002/er.1613
15.
Bratcu
,
A. I.
,
Munteanu
,
I.
, and
Ceanga
,
E.
,
2008
, “
Optimal Control of Wind Energy Conversion Systems: From Energy Optimization to Multi-Purpose Criteria—A Short Survey
,”
16th Mediterranean Conference on Control and Automation
, Ajaccio, France, June 25–27, pp.
759
766
.10.1109/MED.2008.4602183
16.
Montoya
,
F. G.
,
Manzano-Agugliaro
,
F.
,
López-Márquez
,
S.
,
Hernández-Escobedo
,
Q.
, and
Gil
,
C.
,
2014
, “
Wind Turbine Selection for Wind Farm Layout Using Multi-Objective Evolutionary Algorithms
,”
Expert Syst. Appl.
,
41
(
15
), pp.
6585
6595
.10.1016/j.eswa.2014.04.044
17.
Bossanyi
,
E.
,
2003
, “
Wind Turbine Control for Load Reduction
,”
Wind Energy
,
6
(
3
), pp.
229
244
.10.1002/we.95
18.
Banos
,
R.
,
Manzano-Agugliaro
,
F.
,
Montoya
,
F.
,
Gil
,
C.
,
Alcayde
,
A.
, and
Gómez
,
J.
,
2011
, “
Optimization Methods Applied to Renewable and Sustainable Energy: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
4
), pp.
1753
1766
.10.1016/j.rser.2010.12.008
19.
Hicks
,
R. M.
, and
Henne
,
P. A.
,
1978
, “
Wing Design by Numerical Optimization
,”
J. Aircraft
,
15
(
7
), pp.
407
412
.10.2514/3.58379
20.
Joselin Herbert
,
G.
,
Iniyan
,
S.
,
Sreevalsan
,
E.
, and
Rajapandian
,
S.
,
2007
, “
A Review of Wind Energy Technologies
,”
Renewable Sustainable Energy Rev.
,
11
(
6
), pp.
1117
1145
.10.1016/j.rser.2005.08.004
21.
Fuglsang
,
P.
, and
Madsen
,
H.
,
1999
, “
Optimization Method for Wind Turbine Rotors
,”
J. Wind Eng. Ind. Aerodyn.
,
80
(
1
), pp.
191
206
.10.1016/S0167-6105(98)00191-3
22.
Negm
,
H. M.
, and
Maalawi
,
K. Y.
,
2000
, “
Structural Design Optimization of Wind Turbine Towers
,”
Comput. Struct.
,
74
(
6
), pp.
649
666
.10.1016/S0045-7949(99)00079-6
23.
Prayoonrat
,
S.
, and
Walton
,
D.
,
1988
, “
Practical Approach to Optimum Gear Train Design
,”
Comput.-Aided Des.
,
20
(
2
), pp.
83
92
.10.1016/0010-4485(88)90053-X
24.
Aziz
,
E.-S. S.
, and
Chassapis
,
C.
,
2005
, “
A Decision-Making Framework Model for Design and Manufacturing of Mechanical Transmission System Development
,”
Eng. Comput.
,
21
(
2
), pp.
164
176
.10.1007/s00366-005-0320-z
25.
Santoso
,
S.
, and
Le
,
H. T.
,
2007
, “
Fundamental Time–Domain Wind Turbine Models for Wind Power Studies
,”
Renewable Energy
,
32
(
14
), pp.
2436
2452
.10.1016/j.renene.2006.12.008
26.
Ragheb
,
A.
, and
Ragheb
,
M.
,
2010
, “
Wind Turbine Gearbox Technologies
,”
1st International Nuclear & Renewable Energy Conference
(
INREC
), Amman, Jordan, Mar. 21–24.10.1109/INREC.2010.5462549
27.
Naunheimer
,
H.
,
Bertsche
,
B.
, and
Ryborz
,
J.
,
2011
,
Automotive Transmissions Fundamentals, Selection, Design and Application
,
Springer
,
Berlin
.
28.
Heisler
,
H.
,
2002
,
Advanced Vehicle Technology
,
Butterworth-Heinemann
,
Oxford, UK
.
29.
Erjavec
,
J.
, and
Thompson
,
R.
,
2014
,
Automotive Technology: A Systems Approach
,
Cengage Learning
,
Boston
.
30.
Deb
,
K.
, and
Jain
,
S.
,
2003
, “
Multi-Speed Gearbox Design Using Multi-Objective Evolutionary Algorithms
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
609
619
.10.1115/1.1596242
31.
Marjanovic
,
N.
,
Isailovic
,
B.
,
Marjanovic
,
V.
,
Milojevic
,
Z.
,
Blagojevic
,
M.
, and
Bojic
,
M.
,
2012
, “
A Practical Approach to the Optimization of Gear Trains With Spur Gears
,”
Mech. Mach. Theory
,
53
, pp.
1
16
.10.1016/j.mechmachtheory.2012.02.004
32.
Hsi Lin
,
H.
,
Oswald
,
F. B.
, and
Townsend
,
D. P.
,
1994
, “
Dynamic Loading of Spur Gears With Linear or Parabolic Tooth Profile Modifications
,”
Mech. Mach. Theory
,
29
(
8
), pp.
1115
1129
.10.1016/0094-114X(94)90003-5
33.
Shigley
,
J.
,
2004
,
Standard Handbook of Machine Design
,
McGraw-Hill
,
New York
.
34.
Radzevich
,
S. P.
, and
Dudley
,
D. W.
,
1994
,
Handbook of Practical Gear Design
,
Technomic Publishing Co.
,
Lancaster, PA
.
35.
Shigley
,
J. E.
, and
Mischke
,
C. R.
,
1989
,
Mechanical Engineering Design
,
McGraw-Hill
,
New York
.
36.
Arikan
,
M.
,
2002
, “
Direct Calculation of AGMA Geometry Factor J by Making Use of Polynomial Equations
,”
Mech. Res. Commun.
,
29
(
4
), pp.
257
268
.10.1016/S0093-6413(02)00249-5
37.
Avallone
,
E. A.
, and
Baumeister
,
T.
,
1996
,
Marks' Standard Handbook for Mechanical Engineers
,
McGraw-Hill, New York
.
38.
Burton
,
T.
,
2001
,
Wind Energy: Handbook
,
Wiley
,
Chichester, UK
.
39.
Birnbaum
,
Z. W.
, and
Saunders
,
S. C.
,
1968
, “
A Probabilistic Interpretation of Miner's Rule
,”
SIAM J. Appl. Math.
,
16
(
3
), pp.
637
652
.10.1137/0116052
40.
NREL
,
2011
, “
NREL: Wind Integration Datasets-Obtaining the Western Wind Dataset
,” National Renewable Energy Laboratory, Golden, CO, http://www.nrel.gov/electricity/transmission/wind_integration_dataset.html
41.
A. G. M. A.
,
1992
,
A Rational Procedure for the Preliminary Design of Minimum Volume Gears
,
American Gear Manufacturers Association
, Alexandria, VA, Information Sheet No. AGMA 901-A92.
42.
Belegundu
,
A. D.
, and
Chandrupatla
,
T. R.
,
2011
,
Optimization Concepts and Applications in Engineering
,
Cambridge University, Press, Cambridge, UK
.
43.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2004
, “
Survey of Multi-Objective Optimization Methods for Engineering
,”
Struct. Multidiscip. Optim.
,
26
(
6
), pp.
369
395
.10.1007/s00158-003-0368-6
You do not currently have access to this content.