Once-through direct steam generation (DSG) plants convert water into superheated steam suitable for a steam turbine with a single pass of the fluid through the receiver. The control problem in such a plant is to set a feed-water mass flow that maintains a desired steam condition (e.g., temperature) while rejecting the disturbance effect of variable direct normal irradiance (DNI). A mass flow control strategy preserves the simplicity of the plant, but is challenging to implement from a control perspective, as the disturbance effect is nonlinear and difficult to measure, due to the complex physical nature of two-phase flow and the receiver geometry. A model of the receiver behavior can be incorporated into the controller design in the form of a state observer, to estimate the internal behavior of the receiver during operation. This paper presents the design, testing an experimental implementation of full state linear feedback controller for the steam temperature for a once-through DSG system. The system consists of a 500 m2 paraboloidal dish concentrator and a monotube cavity receiver at the Australian National University. The controller manipulates the feed-water mass flow at the receiver inlet to maintain a predetermined specific enthalpy at the receiver outlet, compensating for variations in DNI and other ambient conditions. The controller features three separate regulation mechanisms: a feedforward (FF) law to anticipate changes in DNI; a full state feedback (FSF) loop with a state observer for the receiver; and an additional integrator loop for robustness. Experiments on the Australian National University (ANU) system show that the linear controller maintains steam temperatures to within 3% of a set reference of 500 °C during clear sky conditions, subject to adequate controller tuning. These results show that it is possible to control the ANU system with an FSF loop and state estimator, opening the possibility to test more advanced state based controllers.

References

References
1.
Birnbaum
,
J.
,
Feldhoff
,
J. F.
,
Fichtner
,
M.
,
Hirsch
,
T.
,
Jöcker
,
M.
,
Pitz-Paal
,
R.
, and
Zimmermann
,
G.
,
2011
, “
Steam Temperature Stability in a Direct Steam Generation Solar Power Plant
,”
Sol. Energy
,
85
(
4
), pp.
660
668
.10.1016/j.solener.2010.10.005
2.
Valenzuela
,
L.
,
Zarza
,
E.
,
Berenguel
,
M.
, and
Camacho
,
E.
,
2004
, “
Direct Steam Generation in Solar Boilers
,”
IEEE Control Syst. Mag.
,
24
(
2
), pp.
15
29
.10.1109/MCS.2004.1275429
3.
Camacho
,
E.
,
Rubio
,
F.
,
Berenguel
,
M.
, and
Valenzuela
,
L.
,
2007
, “
A Survey on Control Schemes for Distributed Solar Collector Fields. Part I: Modeling and Basic Control Approaches
,”
Sol. Energy
,
81
(
10
), pp.
1240
1251
.10.1016/j.solener.2007.01.002
4.
Valenzuela
,
L.
,
Zarza
,
E.
,
Berenguel
,
M.
, and
Camacho
,
E. F.
,
2005
, “
Control Concepts for Direct Steam Generation in Parabolic Troughs
,”
Sol. Energy
,
78
(
2
), pp.
301
311
.10.1016/j.solener.2004.05.008
5.
Eck
,
M.
, and
Hirsch
,
T.
,
2007
, “
Dynamics and Control of Parabolic Trough Collector Loops With Direct Steam Generation
,”
Sol. Energy
,
81
(
2
), pp.
268
279
.10.1016/j.solener.2006.01.008
6.
Schlipf
,
D.
,
Hanel
,
L.
, and
Maier
,
H.
,
2012
, “
Model Based Controller Design for a Steam Drum in Linear Fresnel CSP-Plant Using Direct Evaporation
,”
Proceedings of the 18th SolarPACES Conference
, Sept. 11–14.
7.
Maffezzoni
,
C.
, and
Parigi
,
F.
,
1982
. “
Dynamic Analysis and Control of a Solar Power Plant—II. Control System Design and Simulation
,”
Sol. Energy
,
28
(
2
), pp.
117
128
.10.1016/0038-092X(82)90290-0
8.
Rawlings
,
J. B.
, and
Mayne
,
D. Q.
,
2009
,
Model Predictive Control: Theory and Design
,
Nob Hill Publishing
, Madison, WI.
9.
Zapata
,
J. I.
,
Pye
,
J.
, and
Lovegrove
,
K.
,
2013
, “
A Transient Model for the Heat Exchange in a Solar Thermal Once Through Cavity Receiver
,”
Sol. Energy
,
93
(
0
), pp.
280
293
.10.1016/j.solener.2013.04.005
10.
Diaz
,
G.
,
2007
, “
Controllability of Cross-Flow Two-Phase Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4559
4567
.10.1016/j.ijheatmasstransfer.2007.03.024
11.
Li
,
B.
,
Jain
,
N.
, and
Alleyne
,
A. G.
,
2012
, “
LMI Control Design for Nonlinear Vapor Compression Cycle Systems
,”
ASME
Paper No. DSCC2012-MOVIC2012-886.10.1115/DSCC2012-MOVIC2012-8862
12.
Lovegrove
,
K.
,
Burgess
,
G.
, and
Pye
,
J.
,
2011
, “
A New 500 m2 Paraboloidal Dish Solar Concentrator
,”
Sol. Energy
,
85
(
4
), pp.
620
626
.10.1016/j.solener.2010.01.009
13.
Kaneff
,
S.
,
1999
. “
Viable Distributed Dish/Central Plant Solar Power: Status, New Developments, Potential
,”
J. Phys. IV France
,
9
, pp.
Pr3–195
Pr3–200
.10.1051/jp4:1999329
14.
Zapata
,
J.
,
2014
, “
A Modified Extended Kalman Filter to Estimate the State of the SG4 Receiver at the Australia National University
,”
Proceedings of the Australian Solar Council Conference
Melbourne, Australia, May 8–9.
15.
Teschl
,
G.
,
2012
,
Ordinary Differential Equations and Dynamical Systems
, Vol.
140
,
AMS Bookstore
, Providence, RI.
16.
Åstrom
,
K. J.
, and
Murray
,
R. M.
,
2008
,
Feedback Systems
,
Princeton University Press
, Princeton, NJ.
17.
LeVeque
,
R. J.
,
2007
,
Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems
,
SIAM
, Philadelphia, PA.10.1137/1.9780898717839
18.
Hoagg
,
J.
, and
Bernstein
,
D.
,
2007
, “
Nonminimum-Phase Zeros – Much to do About Nothing – Classical Control Revisited Part II
,”
IEEE Control Syst.
,
27
(
3
), pp.
45
57
.10.1109/MCS.2007.365003
19.
Hairer
,
E.
, and
Wanner
,
G.
,
1999
, “
Stiff Differential Equations Solved by Radau Methods
,”
J. Comput. Appl. Math.
,
111
(
1–2
), pp.
93
111
.10.1016/S0377-0427(99)00134-X
20.
He
,
X.-D.
,
Liu
,
S.
,
Asada
,
H. H.
, and
Itoh
,
H.
,
1999
, “
Multivariable Control of Vapor Compression Systems
,”
Proceedings of the ASHRAE Winter Meeting
, Vol.
105
, ASHRAE, Atlanta, GA, Conference Code: 55431.
21.
Rasmussen
,
B.
, and
Alleyne
,
A.
,
2006
, “
Dynamic Modeling and Advanced Control of Air Conditioning and Refrigeration Systems
,” Air Conditioning and Refrigeration Center, College of Engineering, University of Illinois at Urbana-Champaign, Technical Report No. TR-244.
22.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Emami-Naeini
,
A.
,
2010
,
Feedback Control of Dynamics Systems
,
6th ed.
,
Pearson
,
Upper Saddle River, NJ
.
23.
Hodel
,
A.
,
Tenison
,
R. B.
,
Clem
,
D. A.
, and
Ingram
,
J. E.
,
1996
, “
The Octave Control Systems Toolbox: A MATLAB TM-Like CACSD Environment
,”
Proceedings of the IEEE International Symposium on Computer-Aided Control System Design
, Dearborn, MI, Sept. 15–18, pp.
386
391
.10.1109/CACSD.1996.555323
24.
Varga
,
A.
,
1981
, “
A Schur Method for Pole Assignment
,”
IEEE Trans. Autom. Control
,
AC-26
(2), pp.
517
519
.
25.
Burgess
,
G.
,
Lovegrove
,
K.
,
Mackie
,
S.
,
Zapata
,
J.
, and
Pye
,
J.
,
2011
, “
Direct Steam Generation Using the SG4 500 m2 Paraboloidal Dish Concentrator
,”
Proceedings of the 17th SolarPACES Conference
, Granada, Spain, Sept. 15–18.
26.
Wittenmark
,
B.
,
1989
, “
Integrators, Nonlinearities, and Anti-Reset Windup for Different Control Structures
,”
American Control Conference
, Pittsburgh, PA, June 21–23, pp.
1679
1683
.
27.
Daneshyar
,
M.
,
1978
, “
Solar Radiation Statistics for Iran
,”
Sol. Energy
,
21
(
4
), pp.
345
349
.10.1016/0038-092X(78)90013-0
28.
Paltridge
,
G.
, and
Proctor
,
D.
,
1976
, “
Monthly Mean Solar Radiation Statistics for Australia
,”
Sol. Energy
,
18
(
3
), pp.
235
243
.10.1016/0038-092X(76)90022-0
29.
Grena
,
R.
,
2008
, “
An Algorithm for the Computation of the Solar Position
,”
Sol. Energy
,
82
(
5
), pp.
462
470
.10.1016/j.solener.2007.10.001
You do not currently have access to this content.