We present a systematic approach to the design of a set of high-flux solar simulators (HFSSs) for solar thermal, thermochemical, and materials research. The generic simulator concept consists of an array of identical radiation modules arranged in concentric rows. Each module consists of a short-arc lamp coupled to a truncated ellipsoidal specular reflector. The positions of the radiation modules are obtained based on the rim angle, the number of concentric rows, the number of radiation modules in each row, the reflector radius, and a reflector spacing parameter. For a fixed array of radiation modules, the reflector shape is optimized with respect to the source-to-target radiation transfer efficiency. The resulting radiative flux distribution is analyzed on flat and hemispherical target surfaces using the Monte Carlo ray-tracing technique. An example design consists of 18 radiation modules arranged in two concentric rows. On a 60-mm dia. flat target area at the focal plane, the predicted radiative power and flux are 10.6 kW and 3.8 MW m−2, respectively, and the predicted peak flux is 9.5 MW m−2.

References

References
1.
Ries
,
H.
, and
Schubnell
,
M.
,
1990
, “
The Optics of a Two-Stage Solar Furnace
,”
Sol. Energy Mater.
,
21
(2–3), pp.
213
217
.10.1016/0165-1633(90)90055-6
2.
Haueter
,
P.
,
Seitz
,
T.
, and
Steinfeld
,
A.
,
1999
, “
A New High-Flux Solar Furnace for High-Temperature Thermochemical Research
,”
ASME J. Sol. Energy Eng.
,
121
(1), pp.
77
80
.10.1115/1.2888146
3.
Hildebrandt
,
A. F.
, and
Vant-Hull
,
L. L.
,
1977
, “
Power With Heliostats
,”
Science
,
197
(
4309
), pp.
1139
1146
.10.1126/science.197.4309.1139
4.
Radosevich
,
L. G.
, and
Skinrood
,
A. C.
,
1989
, “
The Power Production Operation of Solar One, the 10 MWe Solar Thermal Central Receiver Pilot Plant
,”
ASME J. Sol. Energy Eng.
,
111
(
2
), pp.
144
151
.10.1115/1.3268300
5.
Rabl
,
A.
,
1976
, “
Comparison of Solar Concentrators
,”
Sol. Energy
,
18
(
2
), pp.
93
111
.10.1016/0038-092X(76)90043-8
6.
Lovegrove
,
K.
,
Burgess
,
G.
, and
Pye
,
J.
,
2011
, “
A New 500 m2 Paraboloidal Dish Solar Concentrator
,”
Sol. Energy
,
85
(
4
), pp.
620
626
.10.1016/j.solener.2010.01.009
7.
Gokon
,
N.
,
Takahashi
,
S.
,
Yamamoto
,
H.
, and
Kodama
,
T.
,
2008
, “
Thermochemical Two-Step Water-Splitting Reactor With Internally Circulating Fluidized Bed for Thermal Reduction of Ferrite Particles
,”
Int. J. Hydrogen Energy
,
33
(
9
), pp.
2189
2199
.10.1016/j.ijhydene.2008.02.044
8.
Tamaura
,
Y.
, and
Kaneko
,
H.
,
2005
, “
Oxygen-Releasing Step of ZnFe2O4/(ZnO + Fe3O4)-System in Air Using Concentrated Solar Energy for Solar Hydrogen Production
,”
Sol. Energy
,
78
(
5
), pp.
616
622
.10.1016/j.solener.2004.10.012
9.
Furler
,
P.
,
Scheffe
,
J. R.
, and
Steinfeld
,
A.
,
2012
, “
Syngas Production by Simultaneous Splitting of H2O and CO2 Via Ceria Redox Reactions in a High-Temperature Solar Reactor
,”
Energy Environ. Sci.
,
5
(
3
), pp.
6098
6103
.10.1039/c1ee02620h
10.
Kuhn
,
P.
, and
Hunt
,
A.
,
1991
, “
A New Solar Simulator to Study High Temperature Solid-State Reactions With Highly Concentrated Radiation
,”
Sol. Energy Mater.
,
24
(1–4), pp.
742
750
.10.1016/0165-1633(91)90107-V
11.
Hirsch
,
D.
,
Zedtwitz
,
P. V.
,
Osinga
,
T.
,
Kinamore
,
J.
, and
Steinfeld
,
A.
,
2003
, “
A New 75 kW High-Flux Solar Simulator for High-Temperature Thermal and Thermochemical Research
,”
ASME J. Sol. Energy Eng.
,
125
(
1
), pp.
117
120
.10.1115/1.1528922
12.
Petrasch
,
J.
,
Coray
,
P.
,
Meier
,
A.
,
Brack
,
M.
,
Häberling
,
P.
,
Wuillemin
,
D.
, and
Steinfeld
,
A.
,
2007
, “
A Novel 50 kW 11,000 Suns High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps
,”
ASME J. Sol. Energy Eng.
,
129
(
4
), pp.
405
411
.10.1115/1.2769701
13.
Dibowski
,
H.-G.
,
2014
, “
High-Flux Solar Furnace and Xenon-High-Flux Solar Simulator
,” accessed: Mar 28 2014, http://www.dlr.de/sf/en/desktopdefault.aspx/tabid-8558/14717_read-28267
14.
Krueger
,
K. R.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2011
, “
Design of a New 45 kWe High-Flux Solar Simulator for High-Temperature Solar Thermal and Thermochemical Research
,”
ASME J. Sol. Energy Eng.
,
133
(
1
), p.
011013
.10.1115/1.4003298
15.
Krueger
,
K. R.
,
Lipiński
,
W.
, and
Davidson
,
J. H.
,
2013
, “
Operational Performance of the University of Minnesota 45 kWe High-Flux Solar Simulator
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
044501
.10.1115/1.4023595
16.
Sarwar
,
J.
,
Georgakis
,
G.
,
LaChance
,
R.
, and
Ozalp
,
N.
,
2014
, “
Description and Characterization of an Adjustable Flux Solar Simulator for Solar Thermal, Thermochemical and Photovoltaic Applications
,”
Sol. Energy
,
100
, pp.
179
194
.10.1016/j.solener.2013.12.008
17.
Osram, Manufacturer Data.
18.
NREL, “
Reference Solar Spectral Irradiance: Air Mass 1.5
,” accessed July 10 2014, http://rredc.nrel.gov/solar/spectra/am1.5/
19.
Siegel
,
R.
, and
Howell
,
J. R.
,
2002
,
Thermal Radiation Heat Transfer
,
Taylor & Francis
,
NY
.
20.
Osram, XBO® Theater Lamps, Technology and Application.
21.
Rabl
,
A.
,
1985
,
Active Solar Collectors and Their Applications
,
Oxford University
,
NY
.
22.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2006
,
Active Solar Collectors and Their Applications
,
Wiley
,
Hoboken
, NJ.
23.
Krueger
,
K. R.
,
2012
, “
Design and Characterization of a Concentrating Solar Simulator
,” Ph.D. thesis, University of Minnesota Minneapolis, MN.
24.
Petrasch
,
J.
,
2010
, “
A Free and Open Source Monte Carlo Ray Tracing Program for Concentrating Solar Energy Research
,”
ASME
Paper No. ES2010-90206.10.1115/ES2010-90206
25.
Johnston
,
G.
,
1995
, “
On the Analysis of Surface Error Distributions on Concentrated Solar Collectors
,”
ASME J. Sol. Energy Eng.
,
117
(4), pp.
294
296
.10.1115/1.2847843
26.
Hischier
,
I.
,
Poživil
,
P.
, and
Steinfeld
,
A.
,
2012
, “
A Modular Ceramic Cavity-Receiver for High-Temperature High-Concentration Solar Applications
,”
ASME J. Sol. Energy Eng.
,
134
(
1
), p.
011004
.10.1115/1.4005107
You do not currently have access to this content.