In this work, we report the efficiency enhancement of a GaAs solar cell by using a luminescent down-shifting (LDS) layer consisting of (CdSe)ZnS quantum dots (QDs). The calculated conversion efficiency shows strong dependence on the luminescence quantum efficiency (LQE) and concentration of QDs in the LDS layer as well as the difference in external quantum efficiency (EQE) of the solar cell in the absorption and emission regions of the QD. Although the irradiance of the modified spectrum by the LDS layer was reduced with increases in QD concentration, the emission range of QDs in the spectrum was intensified. So the optimum parameters need to be calculated carefully. When we measured the GaAs solar cell with the LDS layer, it showed increased current density and consequently improved efficiency. The highest performance difference between the GaAs solar cell efficiencies with and without the LDS layer was over 2.8%, although a crystalline silicon solar cell below the LDS layer showed negative change in efficiency owing to its small EQE difference.

References

References
1.
Shockely
,
W.
, and
Queisser
,
H. J.
,
1961
, “
Detailed Balance Limit of Efficiency of P-N Junction Solar Cells
,”
J. Appl. Phys.
,
32
, pp.
510
519
.10.1063/1.1736034
2.
Sasaki
,
K.
,
Agui
,
T.
,
Nakaido
,
K.
,
Takahashi
,
N.
,
Onitsuka
,
R.
, and
Takamoto
,
T.
,
2013
, “Development of InGAP/GaAs/InGaAs Inverted Triple Junction Concentrator Solar Cells,”
Proceedings of 9th International Conference on Concentrating Photovoltaics Systems
,
Miyazaki Japan
, April 15–17, pp.
22
25
.
3.
Sharp Corporation
,
2012
, “
Press Release
,” (Accessed June 5, 2013) http://sharp-world.com/corporate/news/ 120531.html
4.
Green
,
M. A.
,
Conibeer
,
G.
,
Konig
,
D.
,
Shrestha
,
S.
,
Huang
,
S.
,
Aliberty
,
P.
,
Treiber
,
L.
,
Patterson
,
R.
,
Veettil
,
B. P.
,
Hsieh
,
A.
,
Feng
,
Y.
,
Luque
,
A.
,
Marti
,
A.
,
Linares
,
P. G.
,
Canovas
,
E.
,
Antolin
,
E.
,
Marron
,
D. F.
,
Tablero
,
C.
,
Hernandez
,
E.
,
Guillemoles
,
J.-F.
,
Huang
,
L.
,
Bris
,
A. L.
,
Schmidt
,
T.
,
Clady
,
R.
, and
Tayebjee
,
M.
,
2010
, “
Hot Carrier Solar Cells: Challenges and Recent Progress
,”
Photovoltaic Specialists Conference (PVSC)
, 35th
IEEE
,
Honolulu, HI
, June 20–25, pp.
57
60
.10.1109/PVSC.2010.5614200
5.
Green
,
M. A.
,
2001
, “
Multiple Band and Impurity Photovoltaic Solar Cells: General Theory and Comparison to Tandem Cells
,”
Prog. Photovoltaics: Res. Appl.
,
9
(
2
), pp.
137
144
.10.1002/pip.368
6.
Lopez
,
N.
,
Reichertz
,
L. A.
,
Yu
,
K. M.
,
Campman
,
K.
, and
Walukiewicz
,
W.
,
2011
, “
Engineering the Electronic Band Structure for Multiband Solar Cells
,”
Phys. Rev. Lett.
,
106
(
2
), p.
028701
.10.1103/PhysRevLett.106.028701
7.
Brown
,
A. S.
,
Green
,
M. A.
, and
Corkish
,
R. P.
,
2002
, “
Limiting Efficiency for a Multi-Band Solar Cell Containing Three and Four Bands
,”
Phyica E: Low-dimensional Syst. Nanostruct.
,
14
(
1–2
), pp.
121
125
.10.1016/S1386-9477(02)00375-2
8.
Abrams
,
Z. R.
,
Niv
,
A.
, and
Zhang
,
X.
,
2011
, “
Solar Energy Enhancement Using Down-Converting Particles: A Rigorous Approach
,”
J. Appl. Phys.
,
109
, p.
114905
.10.1063/1.3592297
9.
Trupke
,
T.
,
Green
,
M. A.
, and
Wurfel
,
P.
,
2002
, “
Improving Solar Cell Efficiencies by Down-Conversion of High-Energy Photons
,”
J. Appl. Phys.
,
92
, pp.
1668
1674
.10.1063/1.1492021
10.
Shalav
,
A.
,
Richards
,
B. S.
, and
Green
,
M. A.
,
2007
, “
Luminescent Layers for Enhanced Silicon Solar Cell Performance: Up-conversion
,”
Sol. Energy Mater. Sol. Cells
,
91
(
9
), pp.
829
842
.10.1016/j.solmat.2007.02.007
11.
Fischer
,
S.
,
Goldschmidt
,
J. C.
,
Loper
,
P.
,
Bauer
,
G. H.
,
Bruggemann
,
R.
,
Kramer
,
K.
,
Biner
,
D.
,
Hermle
,
M.
, and
Glunz
,
S. W.
,
2010
, “
Enhancement of Silicon Solar Cell Efficiency by Upconversion: Optical and Electrical Characterization
,”
J. Appl. Phys.
,
108
, p.
044912
.10.1063/1.3478742
12.
van Sark
,
W. G. J. H. M.
,
de Wild
,
J.
,
Rath
,
J. K.
,
Meijerink
,
A.
, and
Schropp
,
R. E.
,
2013
, “
Upconversion for Solar Cells
,”
Nanoscale Res. Lett.
,
8
(
1
), p.
81
.10.1186/1556-276X-8-81
13.
Klampaftis
,
E.
,
Ross
,
D.
,
McIntosh
,
K. R.
, and
Richards
,
B. S.
,
2009
, “
Enhancing the Performance of Solar Cells Via Luminescent Down-Shifting of the Incident Spectrum; A Review
,”
Sol. Energy Mater. Sol. Cells
,
93
(
8
), pp.
1182
1194
.10.1016/j.solmat.2009.02.020
14.
van Sark
,
W. G. J. H. M.
,
Meijerink
,
A.
,
Schropp
,
R. E. I.
,
van Roosmalen
,
J. A. M.
, and
Lysen
,
E. H.
,
2005
, “
Enhancing Solar Cell Efficiency by Using Spectral Converters
,”
Sol. Energy Mater. Sol. Cells
,
87
(
1–4
), pp.
395
409
.10.1016/j.solmat.2004.07.055
15.
Huang
,
C.-Y.
,
2012
, “
Impact of CdSe/ZnS Quantum Dot Spectrum Converters on InGaP/GaAs/Ge Multi-Junction Solar Cells
,”
J. Vac. Sci. Technol. A
,
30
(
1
), p.
011201
.10.1116/1.3673784
16.
Abderrezek
,
M.
,
Fathi
,
M.
,
Djahli
,
F.
, and
Ayad
,
M.
,
2013
, “
Study of the Effect of Luminescence Down-Shifting on GaAs Solar Cells With Several Optical Windows Layers
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
011014
.10.1115/1.4025593
17.
Zimmerman
,
R.
,
Morrison
,
G.
, and
Rosengarten
,
G.
,
2009
, “
A Microsolar Collector for Hydrogen Production by Methanol Reforming
,”
ASME J. Sol. Energy Eng.
,
132
(
1
), p.
011005
.10.1115/1.4000354
18.
Song
,
H.
, and
Lee
,
S.
,
2007
, “
Photoluminescent (CdSe)ZnS Quantum Dot-Polymethylmethacrylate Polymer Composite Thin Films in the Visible Spectral Range
,”
Nanotechnology
,
18
(
5
), p.
055402
.10.1088/0957-4484/18/5/055402
19.
Reiss
,
P.
,
Protiere
,
M.
, and
Li
,
L.
,
2009
, “
Core/Shell Semiconductor Nanocrystals
,”
Small
,
5
(
2
), pp.
154
168
.10.1002/smll.200800841
20.
Ahn
,
Y.
,
Kim
,
Y.-H.
, and
Kim
,
S.-I.
,
2013
, “
Detailed Balance Calculation of a Novel Tripl-Junctioin Solar Cell Structure
,”
IEEE J. Photovoltaics
,
3
(
4
), pp.
1403
1408
.10.1109/JPHOTOV.2013.2262373
21.
van Sark
,
W. G.
,
2005
, “
Enhancement of Solar Cell Performance by Employing Planar Spectral Converters
,”
Appl. Phys. Lett.
,
87
(
15
), p.
151117
.10.1063/1.2099532
22.
Hines
,
M. A.
, and
Guyot-Sionnest
,
P.
,
1996
, “
Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals
,”
J. Phys. Chem.
,
100
(
2
), pp.
468
471
.10.1021/jp9530562
You do not currently have access to this content.