The use of HfB2, ZrB2, HfC, ZrC, W, and SiC particles in a high temperature solar particle receiver (SPR) is analyzed. The SPR is modeled as a 1D slab of spherical particles dispersion, submitted to a concentrated and collimated solar flux (q0 = 1500 kW/m2). The temperature inside the SPR is taken constant (T = 1300 K), as for a well-stirred receiver. For the W and SiC, the refractive indexes reported in the literature are retained while the real and imaginary parts of the refractive indexes of the others materials are obtained from available reflectance data, using the Kramers–Kronig (KK) relationships. Three SPR configurations are considered: a homogeneous medium with only one kind of particles, a medium with a mixture of two materials and a medium with coated particles. The three configuration results are compared with those obtained using particles made with an ideal material. For the first configuration, the lowest radiative losses are found using small particles of sizes close to d = 2 μm. For the second configuration, non-noticeable improvements are found by the use of mixtures of the studied materials. For the third configuration, when the SiC is used as mantle, the radiative losses decrease to approach the ideal minimum. The best combination corresponds to a particle with a core of W coated by SiC. Improvements of 2.6% and 2.8% may be achieved using coating thickness of 50 nm with particles of d = 2 μm and d = 100 μm, respectively. The use of coated particles may thus lead to significant improvements in the radiative performances of a SPR working at high temperature.

References

References
1.
Hunt
,
A.
,
1978
, “
Small Particle Heat Exchanger
,” Lawrence Berkeley Laboratory, Technical Report No. LBL-7841.
2.
Abdelrahman
,
M.
,
Fumeaux
,
P.
, and
Suter
,
P.
,
1979
, “
Study of Solid–Gas Suspensions Used for Direct Absorption of Concentrated Solar Radiation
,”
Sol. Energy
,
22
(
1
), pp.
45
48
.10.1016/0038-092X(79)90058-6
3.
Tan
,
T.
, and
Chen
,
Y.
,
2010
, “
Review of Study on Solid Particle Solar Receivers
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
265
276
.10.1016/j.rser.2009.05.012
4.
Hunt
,
A.
, and
Miller
,
F.
,
2010
, “
Small Particle Heat Exchanger Receivers for Solar Thermal Power
,”
SolarPaces: Concentrating Solar Power and Chemical Energy Systems
,
Perpignan, France
, Sept. 21–24.
5.
Falcone
,
P.
,
Noring
,
J.
, and
Hruby
,
J.
,
1985
, “
Assessment of a Solid Particle Receiver for a High Temperature Solar Central Receiver System
,” Sandia National Laboratories, Technical Report No. SAND85-8208.
6.
Hruby
,
J.
,
1986
, “
A Technical Feasibility Study of a Solid Particle Solar Central Receiver for High Temperature Applications
,” Sandia National Laboratories, Technical Report No. SAND86-8211.
7.
Stahl
,
K.
,
Griffin
,
J.
,
Matson
,
B.
, and
Pettit
,
R.
,
1986
, “
Optical Characterization of Solid Particle Solar Central Receiver Materials
,” Sandia National Laboratories, Technical Report No. SAND85-1215.
8.
Kitzmiller
,
K.
, and
Miller
,
F.
,
2010
, “
Thermodynamic Cycles for Small Particle Heat Exchange Receiver Used in Concentrating Solar Power Plants
,”
J. Sol. Energy Eng.
,
133
(3), p. 031014.10.1115/1.4004270
9.
Bertocchi
,
R.
,
Karni
,
J.
, and
Kribus
,
A.
,
2004
, “
Experimental Evaluation of a Non-Isothermal High Temperature Solar Particle Receiver
,”
Energy
,
29
(
5–6
), pp.
687
700
.10.1016/j.energy.2003.07.001
10.
Ordóñez
,
F.
,
Caliot
,
C.
,
Bataille
,
F.
, and
Lauriat
,
G.
,
2014
, “
Optimisation of the Optical Particle Properties for a High Temperature Solar Particle Receiver
,”
Sol. Energy
,
99
, pp.
299
311
.10.1016/j.solener.2013.11.014
11.
Ávila-Marín
,
A.
,
2011
, “
Volumetric Receivers in Solar Thermal Power Plants With Central Receiver System Technology: A Review
,”
Sol. Energy
,
85
(
5
), pp.
891
910
.10.1016/j.solener.2011.02.002
12.
Sani
,
E.
,
Mercatelli
,
L.
,
Fontani
,
D.
,
Sans
,
J.
, and
Sciti
,
D.
,
2011
, “
Hafnium and Tantalum Carbides for High Temperature Solar Receivers
,”
J. Renewable Sustainable Energy
,
3
(
6
), p.
063107
.10.1063/1.3662099
13.
Sani
,
E.
,
Mercatelli
,
L.
,
Jafrancesco
,
D.
,
Sans
,
J.
, and
Sciti
,
D.
,
2012
, “
Ultra-High Temperature Ceramics for Solar Receivers: Spectral and High Temperature Emittance Characterization
,”
J. Eur. Opt. Soc. Rapid Publications
,
7
, p.
012052
.10.2971/jeos.2012.12052
14.
Maag
,
G.
,
Lipinski
,
W.
, and
Steinfeld
,
A.
,
2009
, “
Particle Gas Reacting Flow Under Concentrated Solar Irradiation
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4997
5004
.10.1016/j.ijheatmasstransfer.2009.02.049
15.
Steinfeld
,
A.
, and
Palumbo
,
R.
,
2001
, “
Solar Thermochemical Process Technology
,”
Encyclopedia of Physical Science and Technology
, Vol. 15,
R. A.
Meyers
, ed., Academic Press, pp.
237
256
.
16.
Joseph
,
J.
,
Wiscombe
,
W.
, and
Weinman
,
J.
,
1976
, “
The Delta-Eddington Approximation for Radiative Flux Transfer
,”
J. Atmos. Sci.
,
33
(
12
), pp.
2452
2459
.10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2
17.
Tien
,
C.
, and
Drolen
,
B.
,
1987
, “
Thermal Radiation in Particulate Media With Dependent and Independent Scattering
,”
Annu. Rev. Numer. Fluid Mech. Heat Transfer
,
1
, pp.
1
32
.10.1615/AnnualRevHeatTransfer.v1.30
18.
Modest
,
M.
,
2003
,
Radiative Heat Transfer
,
2nd ed.
Academic
,
New York
.
19.
Chandrasekhar
,
S.
,
1960
,
Radiative Transfer
,
Dover
,
New York
.
20.
Meador
,
W.
, and
Weaver
,
W.
,
1979
, “
Two-Stream Approximation to Radiative Transfer in Planetary Atmospheres: An Unified Description of Existing Methods and New Improvement
,”
J. Atmos. Sci.
,
37
(
3
), pp.
630
643
.10.1175/1520-0469(1980)037<0630:TSATRT>2.0.CO;2
21.
Bohren
,
C.
, and
Huffman
,
D.
,
1983
,
Absorption and Scattering of Light by Small Particles
,
Wiley
,
New York
.
22.
Toon
,
O.
, and
Ackerman
,
T.
,
1981
, “
Algorithms for the Calculation of Scattering by Stratified Spheres
,”
Appl. Opt.
,
20
(
20
), pp.
3657
3660
.10.1364/AO.20.003657
23.
Dombrovsky
,
L.
, and
Baillis
,
D.
,
2010
,
Thermal Radiation in Disperse Systems: An Engineering Approach
,
Begellhouse Inc.
,
West Redding, CT
.
24.
Pégourié
,
B.
,
1988
, “
Optical Properties of Alpha Silicon Carbide
,”
Astron. Astrophys.
,
194
(
1–2
), pp.
335
339
.
25.
Palik
,
E.
,
1985
,
Handbook of Optical Constants of Solids
,
Elsevier Science & Technology
,
New York
.
26.
Wooten
,
F.
,
1972
,
Optical Properties of Solids
,
Academic
,
New York
.
27.
Ohta
,
K.
, and
Ishida
,
H.
,
1988
, “
Comparison Among Several Numerical Integration Methods for Kramers–Kronig Transformation
,”
Appl. Spectrosc.
,
42
(
6
), pp.
952
957
.10.1366/0003702884430380
28.
Bigelow
,
M.
,
Lepeshkin
,
N.
,
Shin
,
H.
, and
Boyd
,
R.
,
2006
, “
Propagation of Smooth and Discontinuous Pulses Through Materials With Very Large or Very Small Group Velocities
,”
J. Phys. Condens. Matter
,
18
(
11
), pp.
3117
3126
.10.1088/0953-8984/18/11/017
29.
Klein
,
H.
,
Karni
,
J.
,
Ben-Zvi
,
R.
, and
Bertocchi
,
R.
,
2007
, “
Heat Transfer in a Directly Solar Receiver/Reactor for Solid–Gas Reactions
,”
Sol. Energy
,
81
(
10
), pp.
1227
1239
.10.1016/j.solener.2007.01.004
You do not currently have access to this content.