A detailed three-dimensional (3D) computational fluid dynamics (CFD) model of a direct absorption solar collector (DAC) is presented. Radiative transfer equation (RTE) is coupled with Navier–Stokes equations and solved numerically to predict the collector efficiency. The spectral properties of absorbing liquids are captured using a band-averaged absorption model. This numerical model is validated with experimental data for two different types of absorbing fluids viz., gray (graphite particles in water) and nongray (copper sulfate) fluids. The validated model is used for parametric studies to determine the right design choices for an improved collector. Impact of optical concentration ratio (CR), optical density of the fluid, mass flowrate, and thermal insulation on the collector efficiency were studied. Increase in collector efficiency of up to 28% is seen due to higher optical CRs, which is attributable to good absorption characteristics of the receiver and reduced area for losses. The collector efficiency does not improve with absorption coefficient of the fluid beyond a certain value for a given thickness of the fluid layer. The range of mass flow rates considered in the study was found to have no impact on collector efficiency. Thermal insulation is found to be very effective in minimizing the overall thermal losses and enhancing the collector efficiency. The numerical model presented here may be used to identify optimum CR, absorption coefficient of liquid for a direct absorption concentrating collector.

References

References
1.
Cengel
,
Y. A.
, and
Ozisik
,
M. N.
,
1984
, “
Solar Radiation Absorption in Ponds
,”
Sol. Energy
,
33
(
6
), pp.
581
591
.10.1016/0038-092X(84)90014-8
2.
Minardi
,
J. E.
, and
Chuang
,
H. N.
,
1975
, “
Performance of Black Liquid Flat-Plate Solar Collector
,”
Sol. Energy
,
17
(
3
), pp.
179
183
.10.1016/0038-092X(75)90057-2
3.
Beard
,
J. T.
,
Iachetta
,
F. A.
,
Messer
,
R. F.
,
Huckstep
,
F. L.
, and
May
,
W. B.
,
1977
, “
Performance and Analysis of an Open Fluid-Film Solar Collector
,”
Proc. Ann. Meet. American Section Int. Sol. Energy Society
, Vol. 1, pp. 26–29.
4.
Beard
,
J. T.
,
Iachetta
,
F. A.
,
Messer
,
R. F.
,
Huckstep
,
F. L.
, and
May
,
W. B.
,
1978
, “
Design and Operational Influences on Thermal Performance of Solaris Solar Collector
,”
ASME J. Eng. Power
,
100
(
4
), pp.
497
502
.10.1115/1.3446385
5.
Samuel
,
T. D. M. A.
, and
Wijeysundera
,
N. E.
,
1983
, “
Heat Withdrawal From Multi-Layer Thermal Trap Collectors
,”
Sol. Energy
,
30
(
3
), pp.
261
270
.10.1016/0038-092X(83)90155-X
6.
Kumar
,
S.
, and
Tien
,
C. L.
,
1990
, “
Analysis of Combined Radiation and Convection in a Particulate-Laden Liquid Film
,”
ASME J. Sol. Energy Eng.
,
112
(
4
), pp.
293
300
.10.1115/1.2929937
7.
Tyagi
,
H.
,
Phelan
,
P.
, and
Prasher
,
R.
,
2009
, “
Predicted Efficiency of Nanofluid-Based Direct Absorption Solar Receiver
,”
ASME J. Sol. Energy Eng.
,
131
(
4
), p.
041004
.10.1115/1.3197562
8.
Lenert
,
A.
, and
Wang
,
E. N.
,
2012
, “
Optimization of Nanofluid Volumetric Receivers for Solar Thermal Energy Conversion
,”
Sol. Energy
,
86
(
1
), pp.
253
265
.10.1016/j.solener.2011.09.029
9.
Copeland
,
R. J.
,
Leach
,
J.
, and
Stein
,
C.
,
1982
, “
High Temperature Molten Salt Solar Thermal Systems
,”
Proceedings of the 17th International Energy Conversion Engineering Conference
, IEEE, New York, pp.
2032
2036
.
10.
Ho
,
C. K.
, and
Iverson
,
B. D.
,
2014
, “
Review of High-Temperature Central Receiver Designs, for Concentrating Solar Power
,”
Renewable Sustainable Energy Rev.
,
29
, pp.
835
846
.10.1016/j.rser.2013.08.099
11.
Houf
,
W. G.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
,
1984
, “
Effect of Solar Radiation on Thermal and Hyrdodynamic Boundary Condtions in Laminar Open Channel Flow
,”
ASME J. Sol. Energy Eng.
,
106
(
4
), pp.
475
482
.10.1115/1.3267627
12.
Webb
,
B. W.
, and
Viskanta
,
R.
,
1985
, “
Analysis of Heat Transfer and Solar Radiation Absorption in an Irradiated Thin, Falling Molten Film
,”
ASME J. Sol. Energy Eng.
,
107
(
2
), pp.
113
119
.10.1115/1.3267663
13.
Vaxman
,
M.
, and
Sokolov
,
M.
,
1998
, “
Analysis of Free Flow Solar Collector
,”
Sol. Energy
,
35
(3), pp.
287
290
.10.1016/0038-092X(85)90109-4
14.
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Taylor
,
R. A.
, and
Tyagi
,
H.
,
2013
, “
Trends and Opportunities in Direct-Absorption Thermal Collectors
,”
J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021003
.10.1115/1.4023930
15.
Otanicar
,
T. P.
,
Phelan
,
P. E.
, and
Golden
,
J. S.
,
2009
, “
Optical Properties of Liquids for Direct Absorption Solar Thermal Energy Systems
,”
Sol. Energy
,
83
(
7
), pp.
969
987
.10.1016/j.solener.2008.12.009
16.
Otanicar
,
T. P.
,
Phelan
,
P. E.
,
Prasher
,
R. S.
,
Rosengarten
,
G.
, and
Taylor
,
R. A.
,
2010
, “
Nanofluid Based Direct Absorption Solar Collector
,”
J. Renewable Sustainable Energy
,
2
(
3
), p.
033102
. 10.1063/1.3429737
17.
Slocum
,
A. H.
,
Codd
,
D. S.
,
Buongiorno
,
J.
,
Forsberg
,
C.
,
McKrell
,
T.
,
Nave
,
J. C.
,
Papanicolas
,
C. N.
,
Ghobeity
,
A.
,
Noone
,
C. J.
,
Passerini
,
S.
,
Rojas
,
F.
, and
Mitsos
,
A.
,
2011
, “
Concentrated Solar Power on Demand
,”
Sol. Energy
,
85
(
7
), pp.
1519
1529
.10.1016/j.solener.2011.04.010
18.
Khullar
,
V.
,
Tyagi
,
H.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Singh
,
H.
, and
Taylor
,
R. A.
,
2012
, “
Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector
,”
ASME J. Nanotechnol. Eng. Med.
,
3
(
3
), p.
031003
.10.1115/1.4007387
19.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Walker
,
C. A.
,
Nguyen
,
S.
,
Trimble
,
R.
, and
Prasher
,
R.
,
2011
, “
Applicability of Nanofluids in High Flux Solar Collectors
,”
J. Renewable Sustainable Energy
,
3
(
2
), p.
0231041
.
20.
Veeraragavan
,
A.
,
Lenert
,
A.
,
Yilbas
,
Y.
,
Al-Dini
,
S.
, and
Wang
,
E. N.
,
2012
, “
Analytical Model for Design of Volumetric Solar Flow Receivers
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
556
564
.10.1016/j.ijheatmasstransfer.2011.11.001
21.
Veeraragavan
,
A.
,
Lenert
,
A.
,
Yilbas
,
Y.
,
Al-Dini
,
S.
, and
Wang
,
E. N.
,
2013
, “
Corrigendum to Analytical Model for Design of Volumetric Solar Flow Receivers
,”
Int. J. Heat Mass Transfer
,
62
(1), p.
578
.10.1016/j.ijheatmasstransfer.2013.03.010
22.
Kaluri
,
R. S.
,
Dattarajan
,
S.
, and
Ganapathisubbu
,
S.
,
2012
, “
Numerical Simulations of Direct Absorption of Solar Radiation by a Liquid
,”
ASES Proc. World Renewable Energy Forum
, Denver, Paper No. 0332, pp. 1–8.
23.
Vijayaraghavan
,
S.
,
Ganapathisubbu
,
S.
, and
Cothuru
,
S. K.
,
2013
, “
Performance Analysis of a Spectrally Selective Concentrating Direct Absorption Collector
,”
Sol. Energy
,
97
, pp.
418
425
. 10.1016/j.solener.2013.08.008
24.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows — Model Development and Validation
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
25.
Chandrasekhar
,
S.
,
1960
,
Radiative Transfer
,
Dover
,
New York
.
26.
Raithby
,
G. D.
, and
Chui
,
E. H.
,
1990
, “
A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media
,”
ASME J. Heat Transfer
,
112
(
2
), pp.
415
423
. 10.1115/1.2910394
27.
Modest
,
M.
,
2003
,
Radiative Heat Transfer
,
2nd ed.
,
Academic
,
New York
.
28.
Kullenberg
,
G.
,
1968
, “
Scattering of Light by Sargasso Sea water
,”
Deep Sea Res.
,
15
(
4
), pp.
423
432
.
29.
Khalsa
,
S. S. S.
, and
Ho
,
C. K.
,
2011
, “
Radiation Boundary Conditions for Computational Fluid Dynamics Models of High-Temperature Cavity Receivers
,”
ASME J. Sol. Energy Eng.
,
133
(
3
), p.
031020
.10.1115/1.4004274
You do not currently have access to this content.