A combined thermal power and ejector refrigeration cooling cycle is proposed in this paper to harness low-grade solar energy. It explores the possibility of utilizing abundant and low-cost hydrocarbon as the working fluid. Hydrocarbon fluid has been identified as a promising alternative to existing high global-warming-potential (GWP) refrigerants (i.e., HFCs) in next-generation cooling and organic thermal power systems. Several typical alternative refrigerants are evaluated by considering their fundamental thermophysical properties: absolute pressure level, volumetric cooling capacity, surface tension, saturated liquid/vapor density ratio, and kinematic viscosity. Comparing with R1234yf, R1234ze, and R744 (CO2), hydrocarbon refrigerants, such as R290 (propane) and R601 (pentane), do have inherent advantages for either cooling or power generation purposes in hot climates. Fundamental phase stability and transition issues have been considered in designing hydrocarbon ejectors for combined power and cooling cycles operating at high ambient temperature. Thermodynamic energy and exergy analysis has indicated that the proposed stand-alone solar thermal system offers an effective way to sustainable energy production in hot and dry climates.

References

1.
U.S. Department of Energy,
2013
, “
SunShot Vision Study
.” Available at: http://energy.gov/eere/sunshot/sunshot-vision-study.
2.
Barlev
,
D.
,
Vidu
,
R.
, and
Stroeve
,
P.
,
2011
, “
Innovation in Concentrated Solar Power
,”
Sol. Energy Mater. Sol. Cells
,
95
(10)
, pp.
2703
2725
.10.1016/j.solmat.2011.05.020
3.
Wu
,
D. W.
, and
Wang
,
R. Z.
,
2006
, “
Combined Cooling, Heating and Power: A Review
,”
Prog. Energy Combust. Sci.
,
32
(5–6)
, pp.
459
495
.10.1016/j.pecs.2006.02.001
4.
Wang
,
K.
, et al.,
2010
, “
Review of Secondary Loop Refrigeration Systems
,”
Int. J. Refrig.
,
33
(2)
, pp.
212
234
.10.1016/j.ijrefrig.2009.09.018
5.
Lee
,
J.
, and
Mudawar
,
I.
,
2009
, “
Low-Temperature Two-Phase Microchannel Cooling for High-Heat-Flux Thermal Management of Defense Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(2)
, pp.
453
465
.10.1109/TCAPT.2008.2005783
6.
Schmidt
,
R. R.
, and
Notohardjono
,
B. D.
,
2002
, “
High-End Server Low Temperature Cooling
,”
IBM J. Res. Dev.
,
46
(
6
), pp.
739
751
.10.1147/rd.466.0739
7.
Catano
,
J.
,
Zhang
,
T. J.
,
Jensen
,
M. K.
,
Peles
,
Y.
, and
Wen
,
J. T.
,
2013
, “
Vapor Compression Refrigeration Cycle for Electronics Cooling. Part I: Dynamic Modeling and Experimental Validation
,”
Int. J. Heat Mass Transfer
,
66
, pp.
911
921
.10.1016/j.ijheatmasstransfer.2013.06.075
8.
Chen
,
X. J.
,
Omer
,
S.
,
Worall
,
M.
, and
Riffat
,
S.
,
2013
, “
Recent Developments in Ejector Refrigeration Technologies
,”
Renewable Sustainable Energy Rev.
,
19
, pp.
629
651
.10.1016/j.rser.2012.11.028
9.
Huang
,
B. J.
,
Chang
,
J. M.
,
Wang
,
C. P.
, and
Petrenko
,
C. A.
,
1999
, “
A 1-D Analysis of Ejector Performance
,”
Int. J. Refrig.
,
22
(5)
, pp.
354
364
.10.1016/S0140-7007(99)00004-3
10.
Liu
,
F.
,
Li
,
Y.
, and
Groll
,
E. A.
,
2012
, “
Performance Enhancement of CO2 Air Conditioner With a Controllable Ejector
,”
Int. J. Refrig.
,
35
(6)
, pp.
1604
1616
.10.1016/j.ijrefrig.2012.05.005
11.
Khaliq
,
A.
,
Kumar
,
R.
,
Dincer
,
I.
, and
Khalid
,
F.
,
2013
, “
Energy and Exergy Analyses of a New Triple-Staged Refrigeration Cycle Using Solar Heat Source
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
011004
.10.1115/1.4024126
12.
Hernandez
,
J. I.
,
Dorantes
,
R. J.
,
Estrada
,
C. A.
, and
Best
,
R.
,
2005
, “
Study of a Solar Booster Assisted Ejector Refrigeration System With R134a
,”
ASME J. Sol. Energy Eng.
,
127
(
1
), pp.
53
59
.10.1115/1.1771683
13.
Dong
,
J.
,
Pounds
,
D. A.
,
Cheng
,
P.
, and
Ma
,
H. B.
,
2012
, “
An Experimental Investigation of Steam Ejector Refrigeration Systems
,”
ASME J. Therm. Sci. Eng. Appl.
,
4
(
3
), p.
031004
.10.1115/1.4006714
14.
Zheng
,
B.
, and
Weng
,
Y. W.
,
2010
, “
A Combined Power and Ejector Refrigeration Cycle for Low Temperature Heat Sources
,”
Sol. Energy
,
84
(5)
, pp.
784
791
.10.1016/j.solener.2010.02.001
15.
Elbel
,
S.
,
2011
, “
Historical and Present Developments of Ejector Refrigeration Systems With Emphasis on Transcritical Carbon Dioxide Air-Conditioning Applications
,”
Int. J. Refrig.
,
34
(7)
, pp.
1545
1561
.10.1016/j.ijrefrig.2010.11.011
16.
Petrenko
,
V. O.
, and
Volovyk
,
O. S.
,
2011
, “
Theoretical Study and Design of a Low-Grade Heat-Driven Pilot Ejector Refrigeration Machine Operating With Butane and Isobutane and Intended for Cooling of Gas Transported in a Gas-Main Pipeline
,”
Int. J. Refrig.
,
34
(7)
, pp.
1699
1706
.10.1016/j.ijrefrig.2011.01.016
17.
Wang
,
H.
,
Peterson
,
R.
,
Harada
,
K.
,
Miller
,
E.
,
Ingram-Goble
,
R.
,
Fisher
,
L.
,
Yih
,
J.
, and
Ward
,
C.
,
2011
, “
Performance of a Combined Organic Rankine Cycle and Vapor Compression Cycle for Heat Activated Cooling
,”
Energy
,
36
(1)
, pp.
447
458
.10.1016/j.energy.2010.10.020
18.
Ayub
,
Z.
,
2012
, “
Status of Enhanced Heat Transfer in Systems With Natural Refrigerants
,”
ASME J. Therm. Sci. Eng. Appl.
,
2
(
4
), p.
044001
.10.1115/1.4003343
19.
Kim
,
M.-H.
,
Pettersen
,
J.
, and
Bullard
,
C. W.
,
2004
, “
Fundamental Process and System Design Issues in CO2 Vapor Compression Systems
,”
Prog. Energy Combust. Sci.
,
30
(2)
, pp.
119
174
.10.1016/j.pecs.2003.09.002
20.
Grazzini
,
G.
,
Milazzo
,
A.
, and
Piazzini
,
S.
,
2011
, “
Prediction of Condensation in Steam Ejector for a Refrigeration System
,”
Int. J. Refrig.
,
34
(7)
, pp.
1641
1648
.10.1016/j.ijrefrig.2010.09.018
21.
Carey
,
V. P.
,
2008
,
Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
, 2nd ed.,
Taylor & Francis
,
NY
.
22.
Liao
,
C.
,
2008
, “
Gas Ejector Modeling for Design and Analysis
,” Ph.D. dissertation, Texas A & M University, College Station, TX.
You do not currently have access to this content.