A thermo-economic simulation model of a hybrid solar gas-turbine (HSGT) power plant with an integrated storage unit has been developed, allowing determination of the thermodynamic and economic performance. Designs were based around two representative industrial gas-turbines: a high efficiency machine and a low temperature machine. In order to examine the trade-offs that must be made, multi-objective thermo-economic analysis was performed, with two conflicting objectives: minimum investment costs and minimum specific carbon dioxide (CO2) emissions. It was shown that with the integration of storage, annual solar shares above 85% can be achieved by HSGT systems. The levelized electricity cost (LEC) for the gas-turbine system as this level of solar integration was similar to that of parabolic trough plants, allowing them to compete directly in the solar power market. At the same time, the water consumption of the gas-turbine system is significantly lower than contemporary steam-cycle based solar thermal power plants.

References

References
1.
Ummel
,
K.
, and
Wheeler
,
D.
,
2008
, “
Desert Power: The Economics of Solar Thermal Electricity for Europe, North Africa, and the Middle East
,” Working Paper 156,
Center for Global Development
,
Washington, DC
, http://www.cgdev.org/content/publications/detail/1417884/
2.
Avila-Marin
,
A.
,
2011
, “
Volumetric Receivers in Solar Thermal Power Plants With Central Receiver System Technology: A Review
,”
Sol. Energy
,
85
(
5
), pp.
891
910
.10.1016/j.solener.2011.02.002
3.
U.S. Department of Energy
,
2001
, “
Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Solar Power Electricity Generation
,” Report to Congress, http://www1.eere.energy. gov/solar/pdfs/csp_water_study.pdf
4.
Mund
,
F.
, and
Pilidis
,
P.
,
2006
, “
Gas Turbine Compressor Washing: Historical Developments, Trends and Main Design Parameters for Online Systems
,”
ASME J. Eng. Gas Turbines Power
,
128
(
2
), pp.
344
353
.10.1115/1.2132378
5.
Scheuerer
,
K.
,
1986
, “
Berechnung des Stationären und In-stationären Betriebsverhaltens von Solar-Kraftanlagen mit Paraboloidkonzentrator und Gasturbine
,” Ph.D. thesis, Technische Universität München, Munich, Germany.
6.
Schmuttermair
,
H.
,
1992
, “
Experimentelle Simulation und Analyse des Betriebsverhaltens einer Solar-Kraftanlage mit Gasturbine
,” Ph.D. thesis, Technische Universität München, Munich, Germany.
7.
Heller
,
P.
,
Pfänder
,
M.
,
Denk
,
T.
,
Tellez
,
F.
,
Valverde
,
A.
,
Fernandez
,
J.
, and
Ring
,
A.
,
2006
, “
Test and Evaluation of a Solar Powered Gas Turbine System
,”
Sol. Energy
,
80
(
10
), pp.
1225
1230
.10.1016/j.solener.2005.04.020
8.
Amsbeck
,
L.
,
Buck
,
R.
,
Heller
,
P.
,
Jedamski
,
J.
, and
Uhlig
,
R.
,
2009
, “
Development of a Tube Receiver for a Solar-Hybrid Microturbine System
,”
Proceedings of the International SolarPACES Conference
,
Berlin
.
9.
Korzynietz
,
R.
,
Quero García
,
M.
, and
Uhlig
,
R.
,
2012
, “
SOLUGAS—Future Solar Hybrid Technology
,”
Proceedings of the International SolarPACES Conference
,
Marrakesh
.
10.
Schwarzbözl
,
P.
,
Buck
,
R.
,
Sugarmen
,
C.
,
Ring
,
A.
,
Crespoc
,
M. J. M.
,
Altweggd
,
P.
, and
Enrile
,
J.
,
2006
, “
Solar Gas Turbine Systems: Design, Cost and Perspectives
,”
Sol. Energy
,
80
(
10
), pp.
1231
1240
.10.1016/j.solener.2005.09.007
11.
Spelling
,
J.
,
Russ
,
M.
,
Laumert
,
B.
, and
Fransson
,
T.
,
2011
, “
A Thermoeconomic Study of Hybrid Solar Gas-Turbine Power Plants
,”
Proceedings of the International SolarPACES Conference
,
Granada
.
12.
Spelling
,
J.
,
Laumert
,
B.
, and
Fransson
,
T.
,
2012
, “
Optimal Gas-Turbine Design for Hybrid Solar Power Plant Operation
,”
ASME J. Eng. Gas-Turbines Power
,
134
(
9
), p.
092301
.10.1115/1.4006986
13.
Fricker
,
H.
,
2004
, “
Regenerative Thermal Storage in Atmospheric Air System Solar Power Plants
,”
Energy
,
29
(
5–6
), pp.
871
881
.10.1016/S0360-5442(03)00192-0
14.
Gil
,
A.
,
Medrano
,
M.
,
Martorell
,
I.
,
Lázarob
,
A.
,
Doladob
,
P.
,
Zalbab
,
B.
, and
Cabeza
,
L. F.
,
2010
, “
State of the Art on High Temperature Thermal Energy Storage for Power Generation: Part 1 Concepts, Materials and Modellization
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
31
55
.10.1016/j.rser.2009.07.035
15.
Wang
,
K.
,
West
,
R. E.
,
Kreith
,
F.
, and
Lynn
,
P.
,
1985
, “
High-Temperature Sensible Heat Storage Options
,”
Energy
,
10
(
10
), pp.
1165
1175
.10.1016/0360-5442(85)90032-5
16.
Schwarzbözl
,
P.
,
2006
, “
STEC: A TRNSYS Model Library for Solar Thermal Electric Components
,” Reference Manuel Release 3.0, Deutsches Zentrum für Luft- und Raumfahrt, Köln.
17.
Jones
,
S.
,
Pitz-Paal
,
R.
,
Schwarzbözl
,
P.
,
Blair
,
N.
, and
Cable
,
R
.,
2001
, “
TRNSYS Modeling of the SEGS VI Parabolic Trough Solar Electric Generating System
,”
Proceedings of the ASME Solar Forum
,
Washington DC
.
18.
Kistler
,
B.
,
1986
, “
A User's Manual for DELSOL3
,” Sandia National Laboratories, Albuquerque, Sandia Report No. 86-8018.
19.
Duffie
,
J.
, and
Beckman
,
W.
,
2006
,
Solar Engineering of Thermal Processes
,
3rd Edition
,
Wiley
,
Hoboken, NJ
.
20.
Prosinecki
,
T.
,
2010
, “
Design and Performance Analysis of a Small Scale Brayton-Cycle Concentrated Solar Power Tower With Regenerative Thermal Storage
,” Master thesis, KTH, Stockholm.
21.
Leyland
,
G.
,
2002
, “
Multi-Objective Optimisation Applied to Industrial Energy Problems
,” Ph.D. thesis, EPFL, Lausanne.
22.
Siemens Industrial Turbomachinery
,
2012
,
Industrial Gas Turbines, the Comprehensive Product Range From 5 to 50 Megawatts
,
Siemens AG, Energy Sector
,
Erlangen, Germany
.
23.
Bhargava
,
R.
,
Bianchi
,
M.
,
De Pascale
,
A.
,
Negri di Montenegro
,
G.
, and
Peretto
,
A.
,
2007
, “
Gas Turbine Based Power Cycles—A State-of-the-Art Review
,”
Proceedings of the International Conference on Power Engineering
,
Hangzhou
.
24.
Jonsson
,
M.
,
Bolland
,
O.
,
Bücker
,
D.
, and
Rost
,
M.
,
2005
, “
Gas Turbine Cooling Model for Evaluation of Novel Cycles
,”
Proceedings of the International ECOS Conference
,
Trondheim
.
25.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2004
, “
Survey of Multi-Objective Optimization Methods for Engineering
,”
Struct. Multidiscip. Optim.
,
26
(
6
), pp.
369
395
.10.1007/s00158-003-0368-6
26.
Pelster
,
S.
,
1998
, “
Environomic Modeling and Optimization of Advanced Combined Cycle Cogeneration Power Plants Including CO2 Separation Options
,” Ph.D. thesis, EPFL, Lausanne.
27.
Turton
,
R.
,
Baile
,
R.
,
Whiting
,
W.
, and
Shaeiwitz, J.
,
1998
,
Analysis, Synthesis, and Design of Chemical Processes
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
28.
International Energy Agency
,
2010
,
Projected Costs of Generating Electricity
,
IEA Publications
,
Paris, France
.
29.
Pitz-Paal
,
R.
,
Dersch
,
J.
, and
Milow
,
B.
, eds.,
2004
, “
ECOSTAR: European Concentrated Solar Thermal Road-Mapping
,
Deutsches Zentrum für Luft- und Raumfahrt
,
Köln, Germany
.
30.
Vattenfall
,
1999
,
Life Cycle Studies of Electricity Production
,
Vattenfall
,
Stockholm, Sweden
.
31.
Lechon
,
Y.
,
de la Rua
,
C.
, and
Saez
,
R.
,
2006
, “
Life Cycle Environmental Impacts of Electricity Production by Solar Thermal Technology in Spain
,”
Proceedings of the International SolarPACES Conference
,
Seville
.
You do not currently have access to this content.