Solar electric production systems with energy storage were simulated and compared, including an ammonia thermochemical cycle, compressed air energy storage (CAES), pumped hydroelectric energy storage (PHES), vanadium flow battery, and thermal energy storage (TES). All systems used the same parabolic concentrator to collect solar energy and Stirling engine to produce electricity. Efficiency and storage losses were modeled after existing experiments. At receiver and ammonia synthesis temperatures of 800 K, efficiencies of all systems except TES were initially similar at 17–19%, while TES provided ∼23%. Further, TES was most efficient for diurnal-scale storage. However, lower time-dependent storage losses caused the ammonia system to have the highest efficiency after one month of storage and to be increasingly favored as time of storage increased. Solar electric production with full capacity factor may be most efficient with a combination of systems including direct solar-electric production and systems with both diurnal and long-term storage.

References

References
1.
Hand
,
M. M.
,
Baldwin
,
S.
,
Demeo
,
E.
,
Reilly
,
J. M.
,
Mai
,
T.
,
Arent
,
D.
,
Porro
,
G.
,
Meshek
,
M.
, and
Sandor
,
D.
,
2012
, “
Renewable Electricity Futures Study
,” Technical Report No. NREL/TP-6A20-52409.
2.
Dunn
,
R. I.
,
Hearps
,
P. J.
, and
Wright
,
M. N.
,
2012
, “
Molten-Salt Power Towers: Newly Commercial Concentrating Solar Storage
,”
Proc. IEEE
,
100
(
2
), pp.
504
515
.10.1109/JPROC.2011.2163739
3.
Carden
,
P. O.
, and
Williams
,
O. M.
,
1978
, “
The Efficiencies of Thermochemical Energy Transfer
,”
Int. J. Energy Res.
,
2
(
4
), pp.
389
406
.10.1002/er.4440020406
4.
Williams
,
O. M.
,
1980
, “
A Comparison of Reversible Chemical-Reactions for Solar Thermochemical Power-Generation
,”
Rev. Phys. Appl.
,
15
(
3
), pp.
453
461
.10.1051/rphysap:01980001503045300
5.
Diver
,
R. B.
, Jr.
, and
Kolb
,
G. J.
,
2008
, “
Screening Analysis of Solar Thermochemical Hydrogen Concepts
,” Technical Report No. SAND2008-1900.
6.
Kodama
,
T.
,
2003
, “
High-Temperature Solar Chemistry for Converting Solar Heat to Chemical Fuels
,”
Prog. Energy Combust. Sci.
,
29
(
6
), pp.
567
597
.10.1016/S0360-1285(03)00059-5
7.
Lovegrove
,
K.
,
Luzzi
,
A.
, and
Kreetz
,
H.
,
1999
, “
A Solar-Driven Ammonia-Based Thermochemical Energy Storage System
,”
Sol. Energy
,
67
(
4–6
), pp.
309
316
.10.1016/S0038-092X(00)00074-8
8.
Lovegrove
,
K.
,
Luzzi
,
A.
,
Soldiani
,
I.
, and
Kreetz
,
H.
,
2004
, “
Developing Ammonia Based Thermochemical Energy Storage for Dish Power Plants
,”
Sol. Energy
,
76
(
1–3
), pp.
331
337
.10.1016/j.solener.2003.07.020
9.
Dunn
,
R.
,
Lovegrove
,
K.
,
Burgess
,
G.
, and
Pye
,
J.
,
2012
, “
An Experimental Study of Ammonia Receiver Geometries for Dish Concentrators
,”
ASME J. Sol. Energy Eng.
,
134
(
4
), p.
041007
.10.1115/1.4006891
10.
Dunn
,
R.
,
Lovegrove
,
K.
, and
Burgess
,
G.
,
2012
, “
A Review of Ammonia-Based Thermochemical Energy Storage for Concentrating Solar Power
,”
Proc. IEEE
,
100
(
2
), pp.
391
400
.10.1109/JPROC.2011.2166529
11.
Fraser
,
P. R.
,
2008
, “
Stirling Dish System Performance Prediction Model
,” M.S. thesis, University of Wisconsin-Madison, Madison, WI.
12.
Lovegrove
,
K. M.
,
1996
, “
High Pressure Ammonia Dissociation Experiments for Solar Energy Transport and Storage
,”
Int. J. Energy Res.
,
20
(
11
), pp.
965
978
.10.1002/(SICI)1099-114X(199611)20:11<965::AID-ER208>3.0.CO;2-G
13.
Kreetz
,
H.
,
Lovegrove
,
K.
, and
Luzzi
,
A.
,
2000
, “
Maximizing Thermal Power Output of an Ammonia Synthesis Reactor for a Solar Thermochemical Energy Storage System
,”
ASME J. Sol. Energy Eng.
,
123
(
2
), pp.
75
82
.10.1115/1.1352737
14.
Harvey
,
L. D. D.
,
1995
, “
Solar-Hydrogen Electricity Generation in the Context of Global Co2 Emission Reduction
,”
Clim. Change
,
29
(
1
), pp.
53
89
.10.1007/BF01091639
15.
Harvey
,
L. D. D.
,
1996
, “
Solar-Hydrogen Electricity Generation and Global Co2 Emission Reduction
,”
Int. J. Hydrogen Energy
,
21
(
7
), pp.
583
595
.10.1016/0360-3199(95)00112-3
16.
Samir
,
S.
,
2011
,
Large Energy Storage Systems Handbook
(Compressed Air Energy Storage), F. S. Barnes and J. G. Levine (eds.),
CRC
Press, Taylor & Francis Group, Boca Raton, FL.
17.
Denholm
,
P.
, and
Wisconsin
,
E. C. O.
,
2003
,
Net Energy Balance and Greenhouse Gas Emissions from Renewable Energy Storage Systems, Energy Center of Wisconsin
, Madison, WI.
18.
Neumiller
,
J. L.
,
2006
, “
Reservoir Simulation of Combined Wind Energy and Compressed Air Energy Storage in Different Geologic Settings
,” Ph.D. thesis, Colorado School of Mines, Golden, CO.
19.
Levine
,
J. G.
,
2011
, “
Large Energy Storage Systems Handbook
,”
Pumped Hydroelectric Energy Storage
, F. S. Barnes and J. G. Levine (eds.)
CRC Press
, Taylor & Francis Group, Boca Raton, FL.
20.
Smith
,
C. C.
,
Löf
,
G.
, and
Jones
,
R.
,
1994
, “
Measurement and Analysis of Evaporation From an Inactive Outdoor Swimming Pool
,”
Sol. Energy
,
53
(
1
), pp.
3
7
.10.1016/S0038-092X(94)90597-5
21.
Farnsworth
,
R. K.
,
Thompson
,
E. S.
,
Peck
,
E. L.
, and
Service
,
U. S. N. W.
,
1982
, “
Evaporation Atlas for the Contiguous 48 United States
,” U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, Technical Report No. NWS 33.
22.
Chen
,
D.
,
Wang
,
S.
,
Xiao
,
M.
, and
Meng
,
Y.
,
2010
, “
Preparation and Properties of Sulfonated Poly(Fluorenyl Ether Ketone) Membrane for Vanadium Redox Flow Battery Application
,”
J. Power Sources
,
195
(
7
), pp.
2089
2095
.10.1016/j.jpowsour.2009.11.010
23.
Jia
,
C.
,
Liu
,
J.
, and
Yan
,
C.
,
2012
, “
A Multilayered Membrane for Vanadium Redox Flow Battery
,”
J. Power Sources
,
203
(1)
, pp.
190
194
.10.1016/j.jpowsour.2011.10.102
24.
Teng
,
X.
,
Lei
,
J.
,
Gu
,
X.
,
Dai
,
J.
,
Zhu
,
Y.
, and
Li
,
F.
,
2012
, “
Nafion-Sulfonated Organosilica Composite Membrane for All Vanadium Redox Flow Battery
,”
Ionics
,
18
(
5
), pp.
513
521
.10.1007/s11581-012-0694-z
25.
Xi
,
J.
,
Wu
,
Z.
,
Teng
,
X.
,
Zhao
,
Y.
,
Chen
,
L.
, and
Qiu
,
X.
,
2008
, “
Self-Assembled Polyelectrolyte Multilayer Modified Nafion Membrane With Suppressed Vanadium Ion Crossover for Vanadium Redox Flow Batteries
,”
J. Mater. Chem.
,
18
(
11
), pp.
1232
1238
.10.1039/b718526j
26.
You
,
D.
,
Zhang
,
H.
,
Sun
,
C.
, and
Ma
,
X.
,
2011
, “
Simulation of the Self-Discharge Process in Vanadium Redox Flow Battery
,”
J. Power Sources
,
196
(
3
), pp.
1578
1585
.10.1016/j.jpowsour.2010.08.036
27.
Yang
,
Z.
,
Zhang
,
J.
,
Kintner-Meyer
,
M. C. W.
,
Lu
,
X.
,
Choi
,
D.
,
Lemmon
,
J. P.
, and
Liu
,
J.
,
2011
, “
Electrochemical Energy Storage for Green Grid
,”
Chem. Rev.
,
111
(
5
), pp.
3577
3613
.10.1021/cr100290v
28.
Ma
,
Z.
,
Glatzmaier
,
G.
, and
Kutscher
,
C.
,
2011
, “
Thermal Energy Storage and Its Potential Applications in Solar Thermal Power Plants and Electricity Storage
,” ASME 5th International Conference on Energy Sustainability, pp. 447–456, Washington, D.C.
29.
Barnes
,
F. S.
, and Levine,
2011
, Large Energy Storage Systems Handbook, CRC Press, Taylor & Francis Group, Boca Raton, FL.
30.
Pacheco
,
J.
,
Bradshaw
,
R. W.
,
De La Rosa
,
W.
,
Gilbert
,
R.
,
Goods
,
S.
,
Hale
,
M. J.
,
Jacobs
,
P.
,
Jones
,
S.
,
Kolb
,
G.
,
Prairie
,
M.
,
Reilly
,
H.
,
Showalter
,
S.
, and
Vant-Hull
,
L.
,
2002
, “
Final Test and Evaluation Results From the Solar Two Project
,” Technical Report No. SAND2002-0120.
31.
Iverson
,
B. D.
,
Broome
,
S. T.
,
Kruizenga
,
A. M.
, and
Cordaro
,
J. G.
,
2012
, “
Thermal and Mechanical Properties of Nitrate Thermal Storage Salts in the Solid-Phase
,”
Sol. Energy
,
86
(
10
), pp.
2897
2911
.10.1016/j.solener.2012.03.011
32.
Westenburg
,
C. L.
,
Demeo
,
G. A.
, and
Tanko
,
D. J.
,
2006
, “
Evaporation From Lake Mead, Arizona and Nevada, 1997–1999
,” US Geologic Survey, Scientific Investigation, Technical Report No. 2006–5252.
You do not currently have access to this content.