Increasing of renewable power plants has raised the need for intelligent energy management systems (EMSs). The aim of management system is to reduce energy absorbed from fossil sources. In this paper a layered behavioral based architecture named subsumption is employed for energy management in PV based power plant with storage devices and active load. In the proposed architecture components of the plant including SC, PV, battery, and the grid are organized in different layers. Each layer is implemented as a behavioral rule that can independently perceive and act in the environment. There is a hierarchy in the layers where lower layers have more priority and can inhibit higher layers. The layers use a simple protocol to communicate with management unit. Using this approach, a simple, fast, extensible, and fault tolerant EMS is achieved.

References

References
1.
Cohen
,
D. A.
,
2008
, “
Gridagents: Intelligent Agent Applications for Integration of Distributed Energy Sources Within Distribution Systems
,”
Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Cent
ury, 2008 IEEE
,
Pittsburgh, PA
, July 20–24, pp.
1
5
.
2.
Sycara
,
K.
,
1998
, “
Multiagent Systems
,”
AI Mag.
,
19
(
2
), pp.
79
92
.
3.
Dias
,
M. B.
, and
Stentz
,
A.
,
2002
, “
Opportunistic Optimization for Market-Based Multirobot Control
,”
Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'02)
,
Lausanne, Switzerland
,
3
, pp.
2714
2720
.
4.
Zlot
,
R.
, and
Stentz
,
A.
,
2005
, “
Market-Based Multirobot Coordination for Complex Tasks
,”
Int. J. Rob. Res.
,
25
(
1
), pp.
73
101
.10.1177/0278364906061160
5.
Song
,
T.
,
Yan
,
X.
,
Liang
,
A.
,
Chen
,
K.
, and
Guan
,
H.
,
2009
, “
A Distributed Bidirectional Auction Algorithm for Multirobot Coordination
,”
Proceedings of the 2009 International Conference on Research Challenges in Computer Science
,
Shanghai, China
, Dec. 28–29, pp.
145
148
.
6.
Nanjanath
,
M.
, and
Gini
,
M.
,
2006
, “
Auctions for Task Allocation to Robots
,”
Proceedings of the 9th International Conference on Intelligent Autonomous Systems
,
Tokyo, Japan
, pp.
550
557
.
7.
Matarić
,
M. J.
,
Sukhatme
,
G. S.
, and
Ostergaard
,
E. H.
,
2003
, “
Multi-Robot Task Allocation in Uncertain Environments
,”
Autonom. Rob.
,
14
(
2–3
), pp.
255
263
.10.1023/A:1022291921717
8.
Jiang
,
Z.
,
2006
, “
Agent-Based Control Framework for Distributed Energy Resources Microgrids
,”
Proceedings of the International Conference on Intelligent Agent Technology
,
Hongkong, China
, Dec. 18–22, pp.
646
652
.
9.
Russell
,
S. J.
, and
Norvig
,
P.
,
2003
,
Artificial Intelligence: A Modern Approach
,
2nd ed.
,
Prentice Hall
,
Englewood Cliffs, NJ
.
10.
Dixon
,
J.
,
Moran
,
L.
,
Rodriguez
,
J.
, and
Domke
,
R.
,
2005
, “
Reactive Power Compensation Technologies: State of the Art Review
,”
Proc. IEEE
,
93
(
12
), pp.
2144
2164
.10.1109/JPROC.2005.859937
11.
Hao
,
S.
,
2003
, “
A Reactive Power Management Proposal for Transmission Operators
,”
IEEE Trans. Power Syst.
,
18
(
4
), pp.
1374
1381
.10.1109/TPWRS.2003.818605
12.
Tolbert
,
L. M.
,
Hairong
,
Q.
, and
Peng
,
F. Z.
,
2001
, “
Scalable Multi-Agent System for Realtime Electric Power Management
,”
Power Engineering Society Summer Meeting, Vancouver, BC, July 15–19
, Vol.
3
, pp.
1676
1679
.10.1109/PESS.2001.970327
13.
Dong
,
F.
,
Chowdhury
,
B. H.
,
Crow
,
M. L.
, and
Acar
,
L.
,
2005
, “
Improving Voltage Stability by Reactive Power Reserve Management
,”
IEEE Trans. Power Syst.
,
20
(
1
), pp.
338
345
.10.1109/TPWRS.2004.841241
14.
Lum
,
R.
,
Kotak
,
D. B.
, and
Gruver
,
W. A.
,
2005
, “
Multi-Agent Coordination of Distributed Energy Systems
,”
Proceedings of the 2005 IEEE International Conference on Systems
,
Man and Cybernetics, Waikoloa, HI
, Oct. 10–12, Vol.
3
, pp.
2584
2589
.
15.
Dimeas
,
A. L.
, and
Hatziargyriou
,
N. D.
,
2005
, “
A MAS Architecture for Microgrids Control
,”
Proceedings of the 13th International Conference on Intelligent System Application to Power Systems
,
Arlington, VA
, Nov. 6–10, pp.
402
406
.
16.
Gomez-Gualdron
,
J. G.
, and
Velez-Reyes
,
M.
,
2006
, “
Simulating a Multi-Agent Based Self-Reconfigurable Electric Power Distribution System
,”
Proceedings of the IEEE Workshops on Computers in Power Electronics
,
Troy, NY
, July 16–19, pp.
1
7
.
17.
Pant
,
P.
,
Schoder
,
K.
, and
Feliachi
,
A.
,
2007
, “
An Integrated Electric Shipboard Power System Testbed
,”
Proceedings IEEE on Electric Ship Technologies Symposium
,
Arlington, VA
, May 21–23, pp.
438
442
.
18.
Baxevanos
,
I. S.
, and
Labridis
,
D. P.
,
2007
, “
Implementing Multiagent Systems Technology for Power Distribution Network Control and Protection Management
,”
IEEE Trans. Power Delivery
,
22
(
1
), pp.
433
442
.10.1109/TPWRD.2006.877085
19.
Huang
,
K.
,
Cartes
,
D. A.
, and
Srivastava
,
S. K.
,
2007
, “
A Multiagent-Based Algorithm for Ring-Structured Shipboard Power System Reconfiguration
,”
IEEE Trans. Syst. Man Cybern. Part C
,
37
(
5
), pp.
1016
1021
.10.1109/TSMCC.2007.900643
20.
Zhou
,
G.
,
Krarti
,
M.
, and
Henze
,
G. P.
,
2005
, “
Parametric Analysis of Active and Passive Building Thermal Storage Utilization
,”
ASME J. Sol. Energy Eng.
,
127
(
1
), pp.
37
46
.10.1115/1.1824110
21.
Abras
,
S.
,
Pesty
,
S.
,
Ploix
,
S.
, and
Jacomino
,
M.
,
2010
,
Advantages of MAS for the Resolution of a Power Management Problem in Smart Home
, Vol.
70
,
Springer
,
Berlin, Germany
, pp.
269
278
.
22.
El-Shater
,
T. F.
,
Eskander
,
M. N.
, and
El-Hagry
,
M. T.
,
2006
, “
Energy Flow and Management of a Hybrid Wind/PV/Fuel Cell Generation System
,”
Energy Convers. Manage.
,
47
(
9–10
), pp.
1264
1280
.10.1016/j.enconman.2005.06.022
23.
Cirrincione
,
M.
,
Cossentino
,
M.
,
Gaglio
,
S.
,
Hilaire
,
V.
,
Koukam
,
A.
,
Pucci
,
M.
,
Sabatucci
,
L.
, and
Vitale
,
G.
,
2009
, “
Intelligent Energy Management System
,”
Proceedings of the IEEE International Conference on Industrial Informatics
,
Cardiff, Wales
, June 23–26, pp.
232
237
.
24.
Basso
,
G.
,
Hilaire
,
V.
,
Lauri
,
F.
,
Roche
,
R.
, and
Cossentino
,
M.
,
2011
, “
A MAS-Based Simulator for the Prototyping of Smart Grids
,”
Proceedings of the 9th European Workshop on Multi-Agent Systems (EUMAS 2011)
,
Maastricht, Netherlands
, pp.
1
15
.
25.
Pipattanasomporn
,
M.
,
Feroze
,
H.
, and
Rahman
,
S.
,
2099
, “
Multi-Agent Systems in a Distributed Smart Grid: Design and Implementation
,”
Proceedings of the IEEE/PES on Power Systems Conference and Exposition
,
Seattle, WA
, Mar. 15–18, pp.
1
8
.
26.
Lagorse
,
J.
,
Paire
,
D.
, and
Miraoui
,
A.
,
2010
, “
A Multi-Agent System for Energy Management of Distributed Power Sources
,”
Renewable Energy
,
35
(
1
), pp.
174
182
.10.1016/j.renene.2009.02.029
27.
Erickson
,
R. W.
, and
Maksimovic
,
D.
,
2001
,
Fundamentals of Power Electronics
,
2nd ed.
,
Kluwer Academic
,
Secaucus, NJ
.
28.
Maiti
,
D.
,
Acharya
,
A.
,
Chakraborty
,
M.
,
Konar
,
A.
, and
Janarthanan
,
R.
,
2008
, “
Tuning PID and PI/λDδ Controllers Using the Integral Time Absolute Error Criterion
,”
Proceedings of 4th International Conference on Information and Automation for Sustainability, ICIAFS 2008
,
Colombo, Sri Lanka
, Dec. 12–14, pp.
457
462
.
29.
Brooks
,
R. A.
,
1986
, “
A Robust Layered Control System for a Mobile Robot
,”
IEEE J. Rob. Autom.
,
2
(
1
), pp.
14
23
.10.1109/JRA.1986.1087032
30.
Toal
,
D.
,
Flanagan
,
C.
,
Jones
,
C.
, and
Strunz
,
B.
,
1996
, “
Subsumption Architecture for the Control of Robots
,”
Proceedings of the 13th Irish Manufacturing Conference (IMC-13)
,
Limerick, Ireland
, pp.
703
711
.
31.
Rosenblatt
,
J. K.
, and
Payton
,
D. W.
,
1989
, “
A Fine-Grained Alternative to the Subsumption Architecture for Mobile Robot Control
,”
Proceedings of the International Joint Conference on Neural Networks
,
Washington, DC
, Vol.
2
, pp.
317
323
.
32.
Yufeng
,
M.
, and
Qingxia
,
L.
,
2010
, “
A Mobile Public Information System Based on Subsumption Architecture
,”
Proceedings of the IEEE International Conference on Computer Science and Information Technology
,
Chengdu, China
, July 9–11, Vol.
1
, pp.
331
334
.
33.
Rustemli
,
S.
, and
Dincer
,
F.
,
2011
, “
Modeling of Photovoltaic Panel and Examining Effects of Temperature in Matlab/Simulink
,”
Electron. Electr. Eng.
,
109
(
3
), pp.
35
40
.10.5755/j01.eee.109.3.166
You do not currently have access to this content.