Methanol reforming is a well-known method of producing hydrogen for hydrogen-based fuel cells. Since methanol reforming is an endothermic process, requiring an energy input, it is possible to use this reaction as a way to store primary energy. In this paper, we propose that this reaction can be driven with a vacuum packaged, nonimaging solar collector which has high overall efficiency. The linear compound parabolic concentrator (CPC) collector was designed with a half angle of 27.4 deg and a concentration ratio between 1.5 and 1.75 over this entire cone angle. Furthermore, due to its small size (90 mm × 72.6 mm × 80 mm), the design is portable. Selective surfaces, black chrome and TiNOX, are analyzed for the receiver to absorb solar (short wavelength) radiation while minimizing emission of thermal (long wavelength) radiation. Importantly, this design uses a vacuum layer between the receiver and the frame to minimize the convective heat loss. A ray-tracing optical analysis shows an optical efficiency of 75–80% over the entire half incident angle range. Stagnation tests show that under vacuum conditions, temperature up to 338 °C is achievable. Overall, the proposed design can achieve high temperatures (up to 250 °C) without tracking—which reduces overall cost, operational limitations, and enables a portable design.

References

References
1.
Coventry
,
J. S.
,
2005
, “
Performance of a Concentrating Photovoltaic/Thermal Solar Collector
,”
Sol. Energy
,
78
(
2
), pp.
211
222
.10.1016/j.solener.2004.03.014
2.
Quaschning
,
V.
,
2004
, “
Technical and Economical System Comparison of Photovoltaic and Concentrating Solar Thermal Power Systems Depending on Annual Global Irradiation
,”
Sol. Energy
,
77
(
2
), pp.
171
178
.10.1016/j.solener.2004.04.011
3.
Shanmugam
,
S.
, and
Christraj
,
W.
,
2005
, “
The Tracking of the Sun for Solar Paraboloidal Dish Concentrators
,”
ASME J. Sol. Energy Eng.
,
127
(
1
), pp.
156
160
.10.1115/1.1824103
4.
Winston
,
R.
,
Johnston
,
B.
, and
Balkowski
,
K.
,
2011
, “
Development of Non-Tracking Solar Thermal Technology
,”
Proc. AIP Conf. Proc.
,
1401
, pp.
406
412
.
5.
Wee
,
J.-H.
,
2007
, “
Applications of Proton Exchange Membrane Fuel Cell Systems
,”
Renewable Sustainable Energy Rev.
,
11
(
8
), pp.
1720
1738
.10.1016/j.rser.2006.01.005
6.
Zimmerman
,
R.
,
Morrison
,
G.
, and
Rosengarten
,
G.
,
2010
, “
A Microsolar Collector for Hydrogen Production by Methanol Reforming
,”
ASME J. Sol. Energy Eng.
,
132
(
1
), p.
011005
.10.1115/1.4000354
7.
Hotz
,
N.
,
Zimmerman
,
R.
,
Weinmueller
,
C.
,
Lee
,
M.-T.
,
Grigoropoulos
,
C. P.
,
Rosengarten
,
G.
, and
Poulikakos
,
D.
,
2010
, “
Exergetic Analysis and Optimization of a Solar-Powered Reformed Methanol Fuel Cell Micro-Powerplant
,”
J. Power Sources
,
195
(
6
), pp.
1676
1687
.10.1016/j.jpowsour.2009.09.055
8.
,
S.
,
Silva
,
H.
,
Brandão
,
L.
,
Sousa
,
J. M.
, and
Mendes
,
A.
,
2010
, “
Catalysts for Methanol Steam Reforming—A Review
,”
Appl. Catal. B
,
99
(
1
), pp.
43
57
.10.1016/j.apcatb.2010.06.015
9.
Peppley
,
B. A.
,
Amphlett
,
J. C.
,
Kearns
,
L. M.
, and
Mann
,
R. F.
,
1999
, “
Methanol-Steam Reforming on Cu/ZnO/Al2O3 Catalysts. Part 2. A Comprehensive Kinetic Model
,”
Appl. Catal. A
,
179
(
1–2
), pp.
31
49
.10.1016/S0926-860X(98)00299-3
10.
Zimmerman
,
R.
,
2011
, “
Novel Micro Solar Collector for Portable Hydrogen Production
,” Ph.D. thesis, The University of New South Wales, Sydney, Australia.
11.
Sultana
,
T.
,
Morrison
,
G. L.
, and
Rosengarten
,
G.
,
2012
, “
Thermal Performance of a Novel Rooftop Solar Micro-Concentrating Collector
,”
Sol. Energy
,
86
(
7
), pp.
1992
2000
.10.1016/j.solener.2012.04.002
12.
Winston
,
R.
,
1970
, “
Light Collection Within the Framework of Geometrical Optics
,”
J. Opt. Soc. Am.
,
60
(
2
), pp.
245
247
.10.1364/JOSA.60.000245
13.
Blanco
,
M.
,
Gomez-Leal
,
E.
, and
Gordon
,
J.
,
1986
, “
Asymmetric CPC Solar Collectors With Tubular Receiver: Geometric Characteristics and Optimal Configurations
,”
Sol. Energy
,
37
(
1
), pp.
49
54
.10.1016/0038-092X(86)90106-4
14.
Zimmerman
,
R.
,
Morrison
,
G.
, and
Rosengarten
,
G.
,
2008
, “
A Solar Powered Microreactor for Hydrogen Production by Methanol Reforming
,”
Proceedings of the ASME 2nd International Conference on Energy Sustainability
, Jacksonville, FL, ASME Paper No. ES2008-54202, pp. 391–396.
15.
DuPont,
2013
, “
General Specifications for Kapton Polyimide Films
,” retrieved on Nov. 10, 2013, http://www2.dupont.com/Kapton/en_US/assets/downloads/pdf/Gen_Specs.pdf
16.
Bondarenko
,
V.
,
Dolgoshein
,
B.
,
Grigoriev
,
V.
,
Kondratiev
,
O.
,
Medvedev
,
A.
,
Pavlenko
,
S.
,
Potekhin
,
M.
,
Romaniouk
,
A.
,
Sosnovtsev
,
V.
, and
Tcherniatine
,
V.
,
1993
, “
Kapton Straw Chambers for a Tracking Transition Radiation Detector
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
,
327
(
2
), pp.
386
392
.10.1016/0168-9002(93)90705-M
17.
Shin
,
T.
,
Baker
,
O.
,
Beedoe
,
S.
,
Holder
,
D.
,
Kross
,
B.
,
Majewski
,
S.
,
McCauley
,
A.
,
Naing
,
W.
, and
Vulcan
,
W.
,
1993
, “
Resistive Kapton Straw Tube Drift Chamber Prototype: First Results
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
,
332
(
3
), pp.
469
475
.10.1016/0168-9002(93)90302-X
18.
Reuse
,
P.
,
Renken
,
A.
,
Haas-Santo
,
K.
,
Görke
,
O.
, and
Schubert
,
K.
,
2004
, “
Hydrogen Production for Fuel Cell Application in an Autothermal Micro-Channel Reactor
,”
Chem. Eng. J.
,
101
(
1
), pp.
133
141
.10.1016/j.cej.2004.01.004
19.
Tsai
,
M.-C.
,
Wang
,
J.-H.
,
Shen
,
C.-C.
, and
Yeh
,
C.-T.
,
2011
, “
Promotion of a Copper–Zinc Catalyst With Rare Earth for the Steam Reforming of Methanol at Low Temperatures
,”
J. Catal.
,
279
(
2
), pp.
241
245
.10.1016/j.jcat.2010.12.018
20.
Tchinda
,
R.
, and
Ngos
,
N.
,
2006
, “
A Theoretical Evaluation of the Thermal Performance of CPC With Flat One-Sided Absorber
,”
Int. Commun. Heat Mass Transfer
,
33
(
6
), pp.
709
718
.10.1016/j.icheatmasstransfer.2006.01.019
21.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
1980
, “
Solar Engineering of Thermal Processes
,” NASA STI/Recon Technical Report A 81, p.
16591
.
22.
Goetzberger
,
A.
,
Dengler
,
J.
,
Rommel
,
M.
,
Göttsche
,
J.
, and
Wittwer
,
V.
,
1992
, “
A New Transparently Insulated, Bifacially Irradiated Solar Flat-Plate Collector
,”
Sol. Energy
,
49
(
5
), pp.
403
411
.10.1016/0038-092X(92)90112-N
23.
“LAMBDA 1050 UV/Vis/NIR Spectrophotometer,” retrieved on Nov. 10,
2013
. Available at: http://www.perkinelmer.com/Catalog/Product/ID/L1050
24.
“3MTM Solar Mirror Film 1100,” retrieved on Nov. 10,
2013
. Available at: http://solutions.3m.com/wps/portal/3M/en_US/Renewable/Energy/Product/Films/Solar_Mirror/
25.
Gu
,
X.
,
Taylor
,
R. A.
,
Morrison
,
G.
, and
Rosengarten
,
G.
,
2014
, “
Theoretical Analysis of a Novel, Portable, CPC-Based Solar Thermal Collector for Methanol Reforming
,”
Appl. Energy
,
119
, pp.
467
475
.10.1016/j.apenergy.2014.01.033
26.
Touloukian
,
Y.
,
Powell
,
R.
,
Ho
,
C.
, and
Klemens
,
P.
,
1970
, “
Thermophysical Properties of Matter—The TPRC Data Series. Volume 1. Thermal Conductivity—Metallic Elements and Alloys
,” DTIC Document.
You do not currently have access to this content.