Efficient extraction of wind energy is a complex, multidisciplinary process. This paper examines common objectives used in wind turbine optimization problems. The focus is not on the specific optimized designs, but rather on understanding when certain objectives and constraints are necessary, and what their limitations are. Maximizing annual energy production, or even using sequential aero/structural optimization, is shown to be significantly suboptimal compared to using integrated aero/structural metrics. Minimizing the ratio of turbine mass to annual energy production can be effective for fixed rotor diameter designs, as long as the tower mass is estimated carefully. For variable-diameter designs, the predicted optimal diameter may be misleading. This is because the mass of the tower is a large fraction of the total turbine mass, but the cost of the tower is a much smaller fraction of overall turbine costs. Minimizing the cost of energy is a much better metric, though high fidelity in the cost modeling is as important as high fidelity in the physics modeling. Furthermore, deterministic cost of energy minimization can be inadequate, given the stochastic nature of the wind and various uncertainties associated with physical processes and model choices. Optimization in the presence of uncertainty is necessary to create robust turbine designs.

References

References
1.
Fuglsang
,
P.
, and
Madsen
,
H.
,
1999
, “
Optimization Method for Wind Turbine Rotors
,”
J. Wind Eng. Ind. Aerodyn.
,
80
, pp.
191
206
.10.1016/S0167-6105(98)00191-3
2.
Diveux
,
T.
,
Sebastian
,
P.
,
Bernard
,
D.
,
Puiggali
,
J.
, and
Grandidier
,
J.
,
2001
, “
Horizontal Axis Wind Turbine Systems: Optimization Using Genetic Algorithms
,”
Wind Energy
,
4
, pp.
151
171
.10.1002/we.51
3.
Fuglsang
,
P.
, and
Thomsen
,
K.
,
2001
, “
Site-Specific Design Optimization of 1.5–2.0 MW Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
123
(
4
), pp.
296
303
.10.1115/1.1404433
4.
Fuglsang
,
P.
,
Bak
,
C.
,
Schepers
,
J.
,
Bulder
,
B.
,
Cockerill
,
T.
,
Claiden
,
P.
,
Olesen
,
A.
, and
van Rossen
,
R.
,
2002
, “
Site-Specific Design Optimization of Wind Turbines
,”
Wind Energy
,
5
(
4
), pp.
261
279
.10.1002/we.61
5.
Kenway
,
G.
, and
Martins
,
J.
,
2008
, “
Aerostructural Shape Optimization of Wind Turbine Blades Considering Site-Specific Winds
,”
Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Sept. 10–12, Victoria, Canada.
6.
Petrone
,
G.
,
de Nicola
,
C.
,
Quagliarella
,
D.
,
Witteveen
,
J.
,
Axerio-Cilies
,
J.
, and
Iaccarino
,
G.
,
2011
, “
Wind Turbine Optimization Under Uncertainty With High Performance Computing
,” AIAA Paper No. 2011-3806.
7.
Maki
,
K.
,
Sbragio
,
R.
, and
Vlahopoulos
,
N.
,
2011
, “
System Design of a Wind Turbine Using a Multi-Level Optimization Approach
,”
Renewable Energy
,
43
(
2012
), pp.
101
110
.10.1016/j.renene.2011.11.027
8.
Bottasso
,
C.
,
Campagnolo
,
F.
, and
Croce
,
A.
,
2010
, “Computational Procedures for the Multi-Disciplinary Constrained Optimization of Wind Turbines,” Scientific Report No. DIA-SR 10-02.
9.
Dykes
,
K.
,
Meadows
,
R.
,
Felker
,
F.
,
Graf
,
P.
,
Hand
,
M.
,
Lunacek
,
M.
,
Michalakes
,
J.
,
Moriarty
,
P.
,
Musial
,
W.
, and
Veers
,
P.
,
2011
, “
Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems
,” National Renewable Energy Laboratory, Technical Report No. NREL/TP-5000-52616.
10.
Fingersh
,
L.
,
Hand
,
M.
, and
Laxson
,
A.
,
2006
, “
Wind Turbine Design Cost and Scaling Model
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-500-40566.
11.
Ning
,
A.
,
Damiani
,
R.
, and
Moriarty
,
P.
,
2013
, “
Objectives and Constraints for Wind Turbine Optimization
,” AIAA Paper No. 2013-0201.
12.
Ning
,
A.
,
2013
, “
A Simple Solution Method for the Blade Element Momentum Equations With Guaranteed Convergence
,”
Wind Energy
(in press).10.1002/we.1636
13.
Du
,
Z.
, and
Selig
,
M.
,
1998
, “
A 3-D Stall-Delay Model for Horizontal Axis Wind Turbine Performance Prediction
,” AIAA Paper No. 98-0021.
14.
Eggers
, Jr.,
A. J.
,
Chaney
,
K.
, and
Digumarthi
,
R.
,
2003
, “
An Assessment of Approximate Modeling of Aerodynamic Loads on the UAE Rotor
,” AIAA Paper No. 2003-0868.
15.
Viterna
,
L.
, and
Janetzke
,
D.
,
1982
, “
Theoretical and Experimental Power From Large Horizontal-Axis Wind Turbines
,” National Aeronautics and Space Administration, Cleveland, OH, Lewis Research Center, Report No. NASA TM-82944.
16.
Maples
,
B.
,
Hand
,
M.
, and
Musial
,
W.
,
2010
, “
Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines
,” National Renewable Energy Laboratory, Technical Report No. NREL/TP-5000-49086.
17.
Bywaters
,
G.
,
John
,
V.
,
Lynch
,
J.
,
Mattila
,
P.
,
Norton
,
G.
,
Stowell
,
J.
,
Salata
,
M.
,
Labath
,
O.
,
Chertok
,
A.
, and
Hablanian
,
D.
,
2004
, “
Northern Power Systems WindPACT Drive Train Alternative Design Study Report
,” National Renewable Energy Laboratory, Technical Report No. NREL/SR-500-35524.
18.
International Electrotechnical Commission
,
2005
, “
Wind turbine generation systems
,” International Standard IEC 61400-1.
19.
Yang
,
T. Y.
,
1986
,
Finite Element Structural Analysis
,
Prentice-Hall
, Englewood Cliffs, NJ.
20.
Bir
,
G.
,
2005
, “
User's Guide to PreComp
,” National Renewable Energy Laboratory, Technical Report No. NREL/TP-500-38929.
21.
Griffith
,
D. T.
, and
Ashwill
,
T. D.
,
2011
, “
The Sandia 100-Meter All-Glass Baseline Wind Turbine Blade: SNL100-00
,” Sandia National Laboratories, Albuquerque, Report No. SAND2011-3779.
22.
Bir
,
G. S.
,
2001
, “
Computerized Method for Preliminary Structural Design of Composite Wind Turbine Blades
,”
ASME J. Sol. Energy Eng.
123
(
4
), pp.
372
381
.10.1115/1.1413217
23.
Mandell
,
J.
, and
Samborsky
,
D.
,
1997
, “
DOE/MSU Composite Material Fatigue Database: Test Methods, Materials, and Analysis
,” Sandia National Laboratories, Albuquerque, NM, Technical Report Contractor Report SAND97-3002.
24.
Dykes
,
K.
,
2014
, “
Development of Wind Turbine Component Mass-Based Cost Models
,” NREL Technical Report (unpublished).
25.
Maples
,
B.
,
Hand
,
M.
, and
Saur
,
G.
,
2014
, “
Land-Based Wind Plant Balance of Station Cost and Scaling Model
,” NREL Technical Report (unpublished).
26.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-500-38060.
27.
Lindenburg
,
C.
,
2002
, “
Aeroelastic Modeling of the LMH64-5 Blade
,” Energy Research Center of the Netherlands, Technical Report No. DOWEC-02-KL-083/0, DOWEC 10083_001.
28.
Kooijman
,
H.
,
Lindenburg
,
C.
,
Winkelaar
,
D.
, and
van der Hooft
,
E.
,
2003
, “
DOWEC 6 MW Pre-Design: Aero-Elastic Modeling of the DOWEC 6 MW Pre-Design in PHATAS
,” Energy Research Center of the Netherlands, Technical Report No. DOWEC 10046_009.
29.
Resor
,
B.
,
2012
, “
Definition of a 61.5-Meter Wind Turbine Blade Reference Model
,” personal communication regarding a draft Sandia National Laboratories report.
30.
Berg
,
J.
, and
Resor
,
B.
,
2012
, “
Numerical Manufacturing and Design Tool (NuMAD V2.0) for Wind Turbine Blades: User's Guide
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND2012-728.
31.
Ning
,
A.
, and
Kroo
,
I.
,
2010
, “
Multidisciplinary Considerations in the Design of Wings and Wing Tip Devices
,”
J. Aircr.
,
47
(
2
), pp.
534
543
.10.2514/1.41833
32.
Tegen
,
S.
,
Hand
,
M.
,
Maples
,
B.
,
Lantz
,
E.
,
Schwabe
,
P.
, and
Smith
,
A.
,
2012
, “
2010 Cost of Wind Energy Review
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-5000-52920.
You do not currently have access to this content.