The installation rate of crystalline silicon photovoltaic (PV) modules worldwide is at an all-time high and is projected to continue to grow as the cost of PV technology is reduced. It is important to note that PV power generation is heavily influenced by the local climate. In particular, for crystalline silicon-based PV devices, as the operating temperature of the panel increases, the efficiency decreases. Higher operating temperatures also lead to accelerated material and mechanical degradation, potentially compromising system effectiveness over the lifetime of the panels. In addition, atmospheric pollution can cause particle deposition on the surface of PV modules (soiling), reducing the amount of solar irradiance that reaches the PV material and reducing panel efficiency. Various cooling and cleaning methods have been proposed in the literature to mitigate these problems. In this study, a uniform film of water was continuously recirculated by pumping over the surface of a solar panel using an emitter head attached to the top of the panel. The water cooling technique was able to maintain panel temperature below 40 °C while adjacent untreated panels were operating near 55 °C. Besides the efficiency improvements due to cooling, the film of water also kept the panels clean, avoiding any reduced power output caused by panel soiling. Additional studies were carried out with artificially chilled cooling fluid, insulating materials, and side mirrors to examine the cooling system performance under different installation scenarios. Water cooling is concluded to be an effective means of increasing the efficiency of monocrystalline silicon photovoltaic panels. Under normal operating conditions, the increased energy output from the panels is more than sufficient to compensate for the energy required to pump the water.

References

References
1.
International Energy Agency
,
2011
,
Deploying Renewables: Best and Future Policy Practice
,
OECD Publishing
,
Paris
.
2.
King
,
D. L.
,
Kratochvil
, and
J. A.
,
Boyson
,
W. E.
,
1997
, “
Temperature Coefficients for PV Modules and Arrays: Measurement Methods, Difficulties, and Results
,”
Conference Record of the 26th IEEE Photovoltaic Specialists Conference
,
Anaheim, CA
, September 29–October 3, pp.
1183
1186
.10.1109/PVSC.1997.654300
3.
Hacke
,
P.
,
Terwilliger
,
K.
,
Glick
,
S.
,
Trudell
,
D.
,
Bosco
,
N.
,
Johnston
,
S.
, and
Kurtz
,
S.
,
2010
, “
Test-to-Failure of Crystalline Silicon Modules
,”
35th IEEE Photovoltaic Specialists Conference (PVSC)
,
Honolulu, HI
, June 20–25, pp.
244
250
.
4.
García
,
M.
,
Marroyo
,
L.
,
Lorenzo
,
E.
, and
Pérez
,
M.
,
2008
, “
Experimental Energy Yield in 1·5 × and 2 × PV Concentrators With Conventional Modules
,”
Prog. Photovolt.: Res. Appl.
,
16
(
3
), pp.
261
270
.10.1002/pip.801
5.
Rönnelid
,
M.
,
Karlsson
,
B.
,
Krohn
,
P.
, and
Wennerberg
,
J.
,
2000
, “
Booster Reflectors for PV Modules in Sweden
,”
Prog. Photovolt: Res. Appl.
,
8
(
3
), pp.
279
291
.10.1002/1099-159X(200005/06)8:3%3C279::AID-PIP316%3E3.0.CO;2-%23
6.
Huang
,
B. J.
, and
Sun
,
F. S.
,
2007
, “
Feasibility Study of One-Axis Three- Positions Tracking Solar PV With Low Concentration Ratio Reflector
,”
Energy Conv. Manage.
,
48
(
4
), pp.
1273
1280
.10.1016/j.enconman.2006.09.020
7.
Al-Hasan
,
A.
, and
Ghoneim
,
A. A.
,
2005
, “
A New Correlation Between Photovoltaic Panel's Efficiency and Amount of Sand Dust Accumulated on Their Surface
,”
Int. J. Sust. Energy
,
24
(
4
), pp.
187
197
.10.1080/14786450500291834
8.
Kaldellis
,
J. K.
,
Fragos
,
P.
, and
Kapsali
,
M.
,
2011
, “
Systematic Experimental Study of the Pollution Deposition Impact on the Energy Yield of Photovoltaic Installations
,”
Ren. Energy
,
36
(
10
), pp.
2717
2724
.10.1016/j.renene.2011.03.004
9.
Kaldellis
,
J. K.
, and
Kokala
,
A.
,
2010
, “
Quantifying the Decrease of the Photovoltaic Panels' Energy Yield Due to Phenomena of Natural Air Pollution Disposal
,”
Energy
,
35
(
12
), pp.
4862
4869
.10.1016/j.energy.2010.09.002
10.
Hammond
,
R.
,
Srinivasan
,
D.
,
Harris
,
A.
,
Whitfield
,
K.
, and
Wohlgemuth
,
J.
,
1997
, “
Effects of Soiling on PV Module and Radiometer Performance
,”
Conference Record of the 26th IEEE Photovoltaic Specialists Conference
,
Anaheim, CA
, September 29–October 3, pp.
1121
1124
.10.1109/PVSC.1997.654285
11.
Massi Pavan
,
A.
,
Mellit
,
A.
, and
De Pieri
,
D.
,
2011
, “
The Effect of Soiling on Energy Production for Large-Scale Photovoltaic Plants
,”
Sol. Energy
,
85
(
5
), pp.
1128
1136
.10.1016/j.solener.2011.03.006
12.
Vivar
,
M.
,
Herrero
,
R.
,
Antón
,
I.
,
Martínez-Moreno
,
F.
,
Moretón
,
R.
,
Sala
,
G.
,
Blakers
,
A. W.
, and
Smeltink
,
J.
,
2010
, “
Effect of Soiling in CPV Systems
,”
Sol. Energy
,
84
(
7
), pp.
1327
1335
.10.1016/j.solener.2010.03.031
13.
Smith
,
M. K.
,
Wamser
,
C. C.
,
James
,
K. J.
,
Moody
,
S. S.
,
Sailor
,
D. J.
, and
Rosenstiel
,
T. N.
,
2013
, “
Effects of Natural and Manual Cleaning on Photovoltaic Output
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
034505
.10.1115/1.4023927
14.
Krauter
,
S.
,
Hanitsch
,
R.
,
Campbell
,
P.
, and
Wenham
,
S. R.
,
1994
, “
Optical Modeling, Simulation and Improvement of PV Module Encapsulation
,”
Proceedings of the 12th European Photovoltaic Solar Energy Conference and Exhibition
,
Amsterdam
, April 11–15, pp.
1198
1201
.
15.
Chow
,
T. T.
,
2010
, “
A Review on Photovoltaic/Thermal Hybrid Solar Technology
,”
Appl. Energy
,
87
(
2
), pp.
365
369
.10.1016/j.apenergy.2009.06.037
16.
Krauter
,
S.
,
2004
, “
Increased Electrical Yield Via Water Flow Over the Front of Photovoltaic Panels
,”
Sol. Energy Mater. Solar Cells
,
82
(
1–2
), pp.
131
137
.10.1016/j.solmat.2004.01.011
17.
Odeh
,
S.
, and
Behnia
,
M.
,
2009
, “
Improving Photovoltaic Module Efficiency Using Water Cooling
,”
Heat Transfer Eng.
,
30
(
6
), pp.
499
505
.10.1080/01457630802529214
18.
Abdolzadeh
,
M.
, and
Ameri
,
M.
,
2009
, “
Improving the Effectiveness of a Photovoltaic Water Pumping System by Spraying Water Over the Front of the Photovoltaic Cells
,”
Ren. Energy
,
34
(
1
), pp.
91
96
.10.1016/j.renene.2008.03.024
19.
Kordzadeh
,
A.
,
2010
, “
The Effects of Nominal Power of Array and System Head on the Operation of Photovoltaic Water Pumping Set With Array Surface Covered by a Film of Water
,”
Ren. Energy
,
35
(
5
), pp.
1098
1102
.10.1016/j.renene.2009.10.024
20.
Kim
,
D. J.
,
Kim
,
D. H.
,
Bhattarai
,
S.
, and
Oh
,
J. H.
,
2011
, “
Simulation and Model Validation of the Surface Cooling System for Improving the Power of a Photovoltaic Module
,”
ASME J. Sol. Energy Eng.
,
133
(
4
), p.
041012
.10.1115/1.4004508
21.
Moharram
,
K. A.
,
Abd-Elhady
,
M. S.
,
Kandil
,
H. A.
, and
El-Sherif
,
H.
,
2013
, “
Enhancing the Performance of Photovoltaic Panels by Water Cooling
,”
Ain Shams Eng. J.
,
4
(
4
), pp.
869
877
.10.1016/j.asej.2013.03.005
22.
Cazzaniga
,
R.
,
Rosa-Clot
,
M.
,
Rosa-Clot
,
P.
, and
Tina
,
G. M.
,
2012
, “
Floating Tracking Cooling Concentrating (FTCC) Systems
,”
38th IEEE Photovoltaic Specialists Conference
(
PVSC
), Austin, TX, June 3–8, pp.
000514–000519
.10.1109/PVSC.2012.6317668
23.
“Solar PDX,” 2013, Portland State University Photovoltaic Test Facility, Portland, OR, accessed Dec. 11,
2013
, http://solar.pdx.edu/home/
24.
“M210—Microinverter,” 2013, Enphase Energy Inc., Petaluma, CA, accessed Dec. 11,
2013
, http://enphase.com/wp-uploads/enphase.com/2011/09/Enphase-Datasheet-M210-Microinverter.pdf
You do not currently have access to this content.