Some commercial units and industries need more amount of cooling than the power such as cold storage, shopping complex, etc. In this work, a new cooling cogeneration cycle (Srinivas cycle) has been proposed and solved to generate more cooling with adequate power generation from single source of heat at hot climatic conditions with ammonia–water mixture as a working fluid. The operational processes conditions for the proposed cooling cogeneration plant are different compared to the power-only (Kalina cycle system) system and cooling-only (vapor absorption refrigeration) system. This work focused to generate the optimum working conditions by parametric analysis from thermodynamic point of view. An increase in cycle maximum temperature is only supporting the power generation but not the cooling output. Cooling output is also 15 times more than power generation. So, it has been recommended to operate the integrated plant with low temperature heat recovery. The resulted cycle thermal efficiency, plant thermal efficiency, specific power, specific cooling, cycle power efficiency, cycle coefficient of performance (COP), and solar collector's specific area are 27%, 10%, 15 kW, 220 kW, 1.8%, 0.25, and 10 m2/kW, respectively.

References

References
1.
Srinivas
,
T.
,
Reddy
,
B. V.
, and
Gupta
,
A. V. S. S. K. S.
,
2011
, “
Biomass Fueled Integrated Power and Refrigeration System
,”
Proc. Inst. Mech. Eng., Part A
,
225
(
3
), pp.
249
258
.10.1177/2041296710394284
2.
Tamm
,
G.
,
Goswami
,
D. Y.
,
Lu
,
S.
, and
Hasan
,
A. A.
,
2003
, “
Novel Combined Power and Cooling Thermodynamic Cycle for Low Temperature Heat Sources, Part 1: Theoretical Investigation
,”
ASME J. Sol. Energy Eng.
,
125
(
2
), pp.
218
222
.10.1115/1.1564576
3.
Tamm
,
G.
, and
Goswami
,
D. Y.
,
2003
, “
Novel Combined Power and Cooling Thermodynamic Cycle for Low Temperature Heat Sources, Part 2: Experimental Investigation
,”
ASME J. Sol. Energy Eng.
,
125
(
2
), pp.
223
229
.10.1115/1.1564080
4.
Tamm
,
G.
,
Goswami
,
D. Y.
,
Lu
,
S.
, and
Hasan
,
A. A.
,
2004
, “
Theoretical and Experimental Investigation of a Ammonia–Water Power and Refrigeration Thermodynamic Cycle
,”
Sol. Energy
,
76
(
1–3
), pp.
217
228
.10.1016/j.solener.2003.08.017
5.
Kalina
,
I. A.
,
1984
, “
Combined Cycle System With Novel Bottoming Cycle
,”
ASME J. Eng. Gas Turbine Power
,
106
(
4
), pp.
737
742
.10.1115/1.3239632
6.
Tyagi
,
K. P.
,
1988
, “
Design Parameters of an Aqua-Ammonia Vapor Absorption Refrigeration System
,”
Heat Recovery Syst. CHP
,
8
(
4
), pp.
375
377
.10.1016/0890-4332(88)90032-4
7.
Horuza
,
I.
, and
Callander
,
T. M. S.
,
2004
, “
Experimental Investigation of a Vapor Absorption Refrigeration System
,”
Int. J. Refrig.
,
27
(
1
), pp.
10
16
.10.1016/S0140-7007(03)00119-1
8.
Fernandez Seara
,
J.
,
Vales
,
A.
, and
Vazquez
,
M.
,
1998
, “
Heat Recovery System to Power an Onboard NH3-H2O Absorption Refrigeration Plant in Trawler Chiller Fishing Vessels
,”
Appl. Therm. Eng.
,
18
(
12
), pp.
1189
1205
.10.1016/S1359-4311(98)00001-5
9.
Deng
,
J.
,
Wang
,
R. Z.
, and
Han
,
G. Y.
,
2011
, “
A Review of Thermally Activated Cooling Technologies for Combined Cooling, Heating and Power Systems
,”
Prog. Energy Combust. Sci.
,
37
(
2
), pp.
172
203
.10.1016/j.pecs.2010.05.003
10.
DeVault
,
B.
,
2005
, “
Integrated Energy Systems Cooling, Heating & Power Overview
,” Oak Ridge National Laboratory, http://energetics.com/depeerreview05/pdfs/presentations/enduse/eu2_a2-pdf
11.
Garland
,
P. W.
,
2003
, “
CHP for Buildings Integration: Test Centers at ORNL and University of Maryland
,” Oak Ridge National Laboratory, http://www.ornl.gov/sci/eere/PDFs/garland_seminar.pdf
12.
Zheng
,
D.
,
Chen
,
B.
,
Qi
,
Y.
, and
Jin
,
H.
,
2006
, “
Thermodynamic Analysis of a Novel Absorption Power/Cooling Combined Cycle
,”
Appl. Energy
,
83
(
4
), pp.
311
323
.10.1016/j.apenergy.2005.02.006
13.
Wang
,
J.
,
Dai
,
Y.
, and
Gao
,
L.
,
2008
, “
Parametric Analysis and Optimization for a Combined Power and Refrigeration Cycle
,”
Appl. Energy
,
85
(
11
), pp.
1071
1085
.10.1016/j.apenergy.2008.02.014
14.
Wang
,
J.
,
Dai
,
Y.
,
Zhang
,
T.
, and
Ma
,
S.
,
2009
, “
Parametric Analysis for a New Combined Power and Ejector–Absorption Refrigeration Cycle
,”
Energy
,
34
(
10
), pp.
1587
1593
.10.1016/j.energy.2009.07.004
15.
Srinivas
,
T.
, and
Reddy
,
B. V.
,
2014
, “
Thermal Optimization of a Solar Thermal Cooling Cogeneration Plant at Low Temperature Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), pp.
1
10
.10.1115/1.4026202
16.
Zare
,
V.
,
Mahmoudi
,
S. M. S.
, and
Yari
,
M.
,
2012
, “
Ammonia Water Cogeneration Cycle for Utilizing Waste Heat From the GT-MHR Plant
,”
Appl. Therm. Eng.
,
48
(
15
), pp.
176
185
.10.1016/j.applthermaleng.2012.05.009
17.
Ziegler
,
B.
, and
Trepp
,
C.
,
1984
, “
Equation of State for Ammonia–Water Mixtures
,”
Int. J. Refrig.
,
7
(
2
), pp.
101
106
.10.1016/0140-7007(84)90022-7
18.
Shankar Ganesh
,
N.
, and
Srinivas
,
T.
,
2013
, “
Processes Assessment in Binary Mixture Plant
,”
Int. J. Energy Environ.
,
4
(
1
), pp.
321
330
.
19.
Valan Arasu
,
A.
, and
Sornakumar
,
T.
,
2007
, “
Design, Manufacture and Testing of Fiberglass Reinforced Parabola Trough for Parabolic Trough Solar Collectors
,”
Sol. Energy
,
81
(
10
), pp.
1273
1279
.10.1016/j.solener.2007.01.005
20.
Nag
,
P. K.
,
2005
,
Engineering Thermodynamics
,
3rd ed.
,
Tata McGraw-Hill
,
New Delhi, India
.
21.
Lu
,
S.
, and
Goswami
,
D. Y.
,
2003
, “
Optimization of a Combined Power/Refrigeration Thermodynamic Cycle
,”
ASME J. Sol. Energy Eng.
125
(
2
), pp.
212
217
.10.1115/1.1562950
22.
Pouraghaie
,
M.
,
Atashkari
,
K.
,
Besarati
,
S. M.
, and
Nariman-zadeh
,
N.
,
2010
, “
Thermodynamic Performance Optimization of a Combined Power/Cooling Cycle
,”
Energy Conserv. Manage.
,
51
(
5
), pp.
204
211
.10.1016/j.enconman.2009.09.014
23.
Shankar Ganesh
,
N.
, and
Srinivas
,
T.
,
2013
, “
Thermodynamic Assessment of Heat Source Arrangements in Kalina Power Station
,”
ASCE J. Energy Eng.
,
139
(
2
), pp.
1
10
.10.1061/(ASCE)EE.1943-7870.0000558
24.
Vijayaraghavan
,
S.
, and
Goswami
,
D. Y.
,
2006
, “
A Combined Power and Cooling Cycle Modified to Improve Resource Utilization Efficiency Using a Distillation Stage
,”
Energy
,
31
(
8–9
), pp.
1177
1196
.10.1016/j.energy.2005.04.014
25.
Shankar Ganesh
,
N.
, and
Srinivas
,
T.
,
2012
, “
Design and Modeling of Low Temperature Solar Thermal Power Station
,”
Appl. Energy
,
91
(
1
), pp.
180
186
.10.1016/j.apenergy.2011.09.021
You do not currently have access to this content.