A generalized modeling method is introduced and used to evaluate thermal energy storage (TES) performance. The method describes TES performance metrics in terms of three efficiencies: first-law efficiency, second-law efficiency, and storage effectiveness. By capturing all efficiencies in a systematic way, various TES technologies can be compared on an equal footing before more detailed simulations of the components and concentrating solar power (CSP) system are performed. The generalized performance metrics are applied to the particle-TES concept in a novel CSP thermal system design. The CSP thermal system has an integrated particle receiver and fluidized-bed heat exchanger, which uses gas/solid two-phase flow as the heat-transfer fluid, and solid particles as the heat carrier and storage medium. The TES method can potentially achieve high temperatures (>800 °C) and high thermal efficiency economically.

References

References
1.
Denholm
,
P.
, and
Hummon
,
M.
,
2012
, “
Simulating the Value of Concentrating Solar Power With Thermal Energy Storage in a Production Cost Model
,” NREL Technical Report, NREL/TP-6A20-56731.
2.
Ma
,
Z.
,
Glatzmaier
,
G.
, and
Kutscher
,
C.
,
2011
, “
Thermal Energy Storage and Its Potential Applications in Solar Thermal Power Plants and Electricity Storage
,” ASME ES2011, Washington DC, Aug. 2011.
3.
Mehos
,
M.
,
Kabel
,
D.
, and
Smithers
,
P.
, “
Planting the Seed
,”
Power Energy Magazine
, IEEE, May–June 2009,
7
(3), pp.
55
62
.10.1109/MPE.2009.932308
4.
Sandia and Bechtel Corp
,
1993
, “
Investigation of Thermal Storage and Steam Generator Issues, Contractor Report
,” SAND-93-7084.
5.
Kelly
,
B. D.
,
Herrmann
,
U.
, and
Kearney
,
D. W.
,
2000
, “
Evaluation and Performance Modeling for Integrated Solar Combined Cycles Systems and Thermal Storage System
,” National Renewable Energy, Laboratory Final Report on Contract RAR-9-29442-05.
6.
Price
,
H.
,
Brosseau
,
D.
,
Kearney
,
D.
, and
Kelly
,
B.
,
2007
, “
DOE Advanced Thermal Energy Storage Development Plan for Parabolic Trough Technology
,” NREL Milestone Report.
7.
Pacheco
,
J. E.
,
Showalter
,
S. K.
, and
Kolb
,
W. J.
,
2002
, “
Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants
,”
ASME J. Solar Energy Eng.
,
124
(2), pp.
153
159
.10.1115/1.1464123
8.
Muren
,
R.
,
Arias
,
D.
,
Chapman
,
D.
,
Erickson
,
L.
, and
Gavilan
,
A.
,
2011
, “
Coupled Transient System Analysis: A New Method of Passive Thermal Energy Storage Modeling for High Temperature Concentrated Solar Power Systems
,”
Proceedings of ESFuelCell2011
,
ASME
Energy Sustainability Fuel Cell 2011, Aug. 7–10, 2011, 2011, Washington DC.10.1115/ES2011-54111
9.
Glatzmaier
,
G.
,
2011
, “
New Concepts and Materials for Thermal Energy Storage and Heat-Transfer Fluids
,” Technical Report NREL/TP-5500-52134, DE-AC36-08GO28308.
10.
Schmitz
,
M.
,
Schwarzbozl
,
P.
,
Buck
,
R.
, and
Pitz-Paal
,
R.
,
2006
, “
Assessment of the Potential Improvement Due to Multiple Apertures in Central Receiver Systems With Secondary Concentrators
,”
Sol. Energy
,
80
(
1
), pp.
111
120
.10.1016/j.solener.2005.02.012
11.
Pitz-Paal
,
R.
,
Botero
,
N.
, and
Steinfeld
,
A.
,
2011
, “
Heliostat Field Layout Optimization for High-Temperature Solar Thermochemical Processing
,”
Sol. Energy
,
85
, pp.
334
343
.10.1016/j.solener.2010.11.018
12.
Teichel
,
S.
,
Feierabend
,
L.
,
Klein
,
S.
, and
Reindl
,
D.
,
2011
, “
General Calculation of Semi-Gray Radiation Heat Transfer in Solar Central Cavity Receivers
,”
Proceedings of SOLARPACES 2011
, Granada, Sep., Spain.
14.
Warerkar
,
S.
,
Schmitz
,
S.
,
Goettsche
,
J.
,
Hoffschmidt
,
B.
,
Reißel
,
M.
, and
Tamme
,
R.
,
2009
, “
Air-Sand Heat Exchanger for High-Temperature Storage
,”
Proceedings of the ASME 2009 3rd International Conference of Energy Sustainability
, ES2009, July, 2009, CA.
16.
TRNSYS,
2006
, “
A Transient Simulation Program
,” Vers. 16, Solar Energy Laboratory, University of Wisconsin, Madison, WI.
17.
National Renewable Energy Laboratory, “
SAM Manual
”.
18.
Schwarzbözl
,
P.
,
Zentrum
,
D.
, and
für Luft und Raumfahrt
,
E. V.
,
2006
, “
TRNSYS Model Library for Solar Thermal Electric Components (STEC)
,” Reference Manual Release 3.0, DLR, D-51170 Köln, Nov. 2006, Germany.
19.
Siegel
,
N. P.
,
2012
, “
Thermal Energy Storage for Solar Power Production
,”
WIREs Energy Environ.
,
1
, pp.
119
131
.10.1002/wene.10
20.
Yang
,
Z.
, and
Garimella
,
S. V.
,
2010
, “
Molten-Salt Thermal Energy Storage in Thermoclines Under Different Environmental Boundary Conditions
,”
Appl. Energy
,
87
, pp.
3322
3329
.10.1016/j.apenergy.2010.04.024
21.
Bejan
,
A.
,
1988
,
Advanced Engineering Thermodynamics
,
Wiley
,
New York
.
22.
Abou-Sena
,
A.
,
Ying
,
A.
, and
Abdou
,
M.
,
2007
, “
Experimental Measurements of the Effective Thermal Conductivity of a Lithium Titanate (Li2TiO3) Pebbles-Packed Bed
,”
J. Mater. Process. Technol.
,
181
, pp.
206
212
.10.1016/j.jmatprotec.2006.03.061
23.
Wagner
,
M.
,
2011
, “
System Advisor Model Documentation Technical Manual for the Physical Trough Model
,” National Renewable Energy Laboratory, Mar., Golden, CO.
24.
Kolb
,
G. J.
, and
Hassani
,
V.
,
2006
, “
Performance Analysis of Thermocline Energy Storage Proposed for the 1MW Saguaro Solar Trough Plant
,”
Proceedings of ISEC2006, ASME International Solar Energy Conference
, July 2006, Denver CO.
25.
Kolb
,
G. J.
,
2010
, “
Evaluation of Annual Performance of 2-Tank and Thermocline Thermal Storage Systems for Trough Plants
,”
Proceedings of SOLARPACES 2010
, Sept. 2010, Perpignan, France.
You do not currently have access to this content.