Flux density measurement applied to central receiver systems delivers the spatial distribution of the concentrated solar radiation on the receiver aperture, measures receiver input power, and monitors and might control heliostat aimpoints. Commercial solar tower plants have much larger aperture surfaces than the receiver prototypes tested in earlier research and development (R&D) projects. Existing methods to measure the solar flux density in the receiver aperture face new challenges regarding the receiver size. Also, the requirements regarding costs, accuracy, spatial resolution, and measuring speed are different. This paper summarizes existent concepts, presents recent research results for techniques that can be applied to large-scale receivers and assesses them against a catalog of requirements. Direct and indirect moving bar techniques offer high measurement accuracy, but also have the disadvantage of large moving parts on a solar tower. In the case of external receivers, measuring directly on receiver surfaces avoids moving parts and allows continuous measurement but may be not as precise. This promising technique requires proper scientific evaluation due to specific reflectance properties of current receiver materials. Measurement-supported simulation techniques can also be applied to cavity receivers without installing moving parts. They have reasonable uncertainties under ideal conditions and require comparatively low effort.

References

References
1.
Thalhammer
,
E.
,
1979
, “
Heliostat Beam Characterization System—Update
,”
I.S.A. Reprint 79-692, ISA-79 National Conference and Exhibit
, Chicago, Illinois.
2.
von Tobel
,
G.
,
Schelders
,
Ch.
, and
Real
,
M.
,
1982
, “
Concentrated Solar Flux Measurements at the IEA-SSPS Solar Central Receiver Power Plant
,” Tabernas—Almería, Spain, Final Report, Swiss.
3.
Schiel
,
W.
,
1985
, “
500 kW-Solarturmkraftwerk—Teil I: Mess-Grössen und Messsystem
,” Brennstoff-Wärme-Kraft (BWK) 6/85, S. 266–268.
4.
Neumann
,
A.
, and
Monterreal
,
R.
,
1992
, “
Measurement of Concentrated Solar Radiation With the HERMES II System at the PSA
,”
6th International Symposium on Solar Thermal Concentrating Technologies
, Mojacar, Spain, Sept. 28–Oct. 2.
5.
Lüpfert
,
E.
,
Heller
,
P.
,
Ulmer
,
S.
,
Monterreal
,
R.
, and
Fernández
,
J.
,
2000
, “
Concentrated Solar Radiation Measurement With Video Image Processing and Online Fluxgage Calibration
,”
Solar Thermal 2000 International Conference
, Sydney, Australia, Mar. 8–10.
6.
Imenes
,
A.
,
Stein
,
W.
,
Hinkley
,
J.
,
Benito
,
R.
,
Bolling
,
R.
,
Schramek
,
P.
, and
Ulmer
,
S.
,
2006
, “
Ray Tracing and Flux Mapping as a Design and Research Tool at the National Solar Energy Centre
,”
ANZSES 2006 Conference (Australia and New Zealand Solar Energy Society)
, Canberra, Australia, Sept. 13–15, Paper No. S06-81.
7.
Neumann
,
A.
, and
Groer
,
U.
,
1996
, “
Experimenting With Concentrated Sunlight Using the DLR Solar Furnace
,”
Solar Energy
,
58
, pp.
181
190
.10.1016/S0038-092X(96)00079-5
8.
Kröger
,
K.
,
Kaluza
,
J.
, and
Neumann
,
A.
,
2000
, “
First Application of the Flux Mapping System SCATMES for Secondary Concentrator Performance Analysis
,”
Solar Thermal 2000 International Conference
, Sydney, Australia.
9.
Giral
,
J.
,
Boulet
,
N.
, and
Hernandez
,
G.
,
2000
, “
OBELIX: Flux Mapping System Using a Video Camera
,”
Proceedings of the 14th Task III Meeting Within IEA SolarPACES on Solar Technology and Applications
, Sydney, Australia SolarPACES Technical Report No. III-2/00.
10.
Johnston
,
G.
,
1994
, “
Focal Region Characterizations of Paraboloidal Dishes at the Australian National University
,”
Proceedings of Seventh International Symposium on Solar Thermal Concentrating Technologies
, Moscow, Sept. 26–30.
11.
Ulmer
,
S.
,
Reinalter
,
W.
,
Heller
,
P.
,
Lüpfert
,
E.
, and
Martinez
,
D.
,
2002
, “
Beam Characterization and Improvement With a Flux Mapping System for Dish Concentrators
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
182
188
.10.1115/1.1464881
12.
Ulmer
,
S.
,
2004
, “
Messung der Strahlungsflussdichte-Verteilung Von Punktkonzentrierenden Solarthermischen Kraftwerken
,” Ph.D. dissertation, VDI Verlag, Düsseldorf.
13.
Ulmer
,
S.
,
Lüpfert
,
E.
,
Pfänder
,
M.
, and
Buck
,
R.
,
2004
, “
Calibration Corrections of Solar Tower Flux Density Measurements
,”
Energy
,
29
(
5–6
), pp.
925
933
.10.1016/S0360-5442(03)00197-X
14.
Strachan
,
J. W.
, and
Houser
,
R. M.
,
1993
, “
Testing and Evaluation of Large-Area Heliostats for Solar Thermal Applications
,” Sandia National Laboratories, Albuquerque, NM, SAND92-1381, UC-235.
15.
Ho
,
C.
, and
Khalsa
,
S.
,
2012
, “
A Photographic Flux Mapping Method for Concentrating Solar Collectors and Receivers
,”
ASME J. Sol. Energy Eng.
,
134
(4), p.
041004
.10.1115/1.4006892
16.
Pacheco
,
J.
,
Houser
,
R.
, and
Neumann
,
A.
,
1994
, “
Concepts to Measure Flux and Temperature for External Central Receivers
,”
Joint Solar Engineering Conference
, ASME, pp.
595
603
.
17.
Ballestrín
,
J.
, and
Monterreal
,
R.
,
2004
, “
Hybrid Heat Flux Measurement System for Solar Central Receiver Evaluation
,”
Energy
,
29
(
5–6
), pp.
915
924
.10.1016/S0360-5442(03)00196-8
18.
Yogev
,
O.
,
Gleckman
,
P.
, and
Rozler
,
M.
,
2009
, “
High-Heat Solar Flux Scanner
,”
Proceedings of SolarPACES 2009
, Berlin, Germany, Sept. 15–18.
19.
Elsayed
,
M. M.
,
Fathalah
,
K. A.
, and
Al-Rabghi
,
O. M.
,
1995
, “
Measurements of Solar Flux Density Distribution on a Plane Receiver due to a Flat Heliostat
,”
Sol. Energy
,
54
(
6
), pp.
403
411
.10.1016/0038-092X(95)00010-O
20.
Osuna
,
R.
,
Morillo
,
R.
,
Jiménez
,
J. M.
, and
Fernández-Quero
, V
.
,
2006
, “
Control and Operation Strategies in PS10 Solar Plant
,”
Proceedings 13th Solar PACES
, Sevilla, Spain, Jun. 20–23.
21.
Lewandowski
,
A.
,
Bingham
,
C.
,
Rouzine
,
M.
, and
Rouzine
,
A.
,
2000
, “
Testing of a Wire Analyzer for Flux Distribution
,”
Solar Thermal 2000 International Conference
, Sydney, Australia, Mar. 8–10.
22.
Kaluza
,
J.
, and
Neumann
,
A.
,
2001
,
Comparative Measurements of Different Solar Flux Gauge Types
,”
ASME J. Sol. Energy Eng.
,
123
(3), pp.
251
255
.10.1115/1.1385201
23.
Ballestrín
,
J.
,
Estrada
,
C. A.
,
Rodríguez-Alonso
,
M.
,
Pérez-Rábago
,
C.
,
Langley
,
L. W.
, and
Barnes
,
A.
,
2006
, “
Heat Flux Sensors: Calorimeters or Radiometers?
,”
Sol. Energy
,
80
, pp.
1314
1320
.10.1016/j.solener.2006.03.005
24.
Göhring
,
F.
,
Bender
,
O.
,
Röger
,
M.
,
Nettlau
,
J.
, and
Schwarzbözl
,
P.
,
2011
, “
Flux Density Measurement on Open Volumetric Receivers
,”
Proceedings of SolarPACES 2011
, Granada, Spain, Sept. 20–23.
25.
Belhomme
,
B.
,
Pitz-Paal
,
R.
,
Schwarzbözl
,
P.
, and
Ulmer
,
S.
,
2009
, “
New Fast Ray Tracing Tool for High-Precision Simulation of Heliostat Fields
,”
ASME J. Sol. Energy Eng.
,
131
(
3
), p.
031002
.10.1115/1.3139139
26.
Amsbeck
,
L.
,
Denk
,
T.
,
Ebert
,
M.
,
Gertig
,
C.
,
Heller
,
P.
,
Herrmann
,
P.
,
Jedamski
,
J.
,
John
,
J.
,
Pitz-Paal
,
R.
,
Prosineĉki
,
T.
,
Rehn
,
J.
,
Reinalter
,
W.
, and
Uhlig
,
R.
,
2010
, “
Test of a Solar-Hybrid Microturbine System and Evaluation of Storage Deployment
,”
Proceedings of SolarPACES 2010
, Perpignan, France, Sept. 21–24.
27.
Ulmer
,
S.
,
März
,
T.
,
Prahl
,
C.
,
Reinalter
,
W.
, and
Belhomme
,
B.
,
2011
, “
Automated High Resolution Measurement of Heliostat Slope Errors
,”
Sol. Energy
,
85
, pp.
681
687
.10.1016/j.solener.2010.01.010
28.
Neumann
,
A.
,
Witzke
,
A.
,
Jones
,
S.
, and
Schmitt
,
G.
,
2002
, “
Representative Terrestrial Solar Brightness profiles
,”
ASME J. Sol. Energy Eng.
,
124
(2), pp.
198
204
.10.1115/1.1464880
You do not currently have access to this content.