The current study proposed an experimental investigation into the basic characteristics of solar thermal conversion using supercritical CO2–dimethyl ether (DME) natural convection. The main goals are to reduce the operation pressure while maintaining relative high solar thermal conversion efficiency. Experimental systems were established and tested in Shaoxing area (around N 30.0 deg, E 120.6 deg) of Zhejiang Province, China. Due to the preferable properties of supercritical fluids, very high Reynolds number natural convective flow can be achieved. Typical summer day results are presented and analyzed into detail in this paper. It is found that the introduction of DME has successfully reduced the operation pressure and the increase in DME fraction leads to further reduction. Different from pure supercritical CO2 systems, the collector pressure follows the trend of solar radiation with its peak value at noon, instead of continuously increasing mode. The mass flow rate and temperature are typically more stable and also more sensitive than pure supercritical CO2 tests due to the moderation of supercritical fluid properties when DME is introduced. At the same time, the averaged collector efficiency is less affected by the DME mass addition. It is also found that there possibly exist some optimal of DME mass fraction when both the system suitability and stable natural circulation can be achieved.

References

References
1.
Davidson
,
J. H.
,
Mantell
,
S. C.
, and
Jorgensen
,
G.
,
2002
, “
Status of the Development of Polymeric Solar Water Heating System
,”
Adv. Sol. Energy
,
15
, pp.
149
186
.
2.
Langniss
,
O.
, and
Ince
,
D.
,
2004
, “
Solar Water Heating: A Viable Industry in Developing Countries
,”
Refocus
,
5
(
3
), pp.
18
21
.10.1016/S1471-0846(04)00137-4
3.
Liu
,
L.
,
Wang
,
Z.
,
Zhang
,
H.
, and
Xue
,
Y.
,
2010
, “
Solar Energy Development in China—A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
301
311
.10.1016/j.rser.2009.08.005
4.
Jaisankar
,
S.
,
Ananth
,
J.
,
Thulasi
,
S.
,
Jayasuthakar
,
S. T.
, and
Sheeba
,
K. N.
,
2011
, “
A Comprehensive Review on Solar Water Heaters
,”
Renewable Sustainable Energy Rev.
,
15
(
6
), pp.
3045
3050
.10.1016/j.rser.2011.03.009
5.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,
30
(
3
), pp.
231
295
.10.1016/j.pecs.2004.02.001
6.
Chen
,
L.
, and
Zhang
,
X. R.
,
2014
, “
Experimental Analysis on a Novel Solar Collector System Achieved by Supercritical CO2 Natural Convection
,”
Energy Convers. Manage.
,
77
, pp.
173
182
.10.1016/j.enconman.2013.08.059
7.
Zhang
,
X. R.
,
Zhang
,
Y. L.
, and
Chen
,
L.
,
2014
, “
Experimental Study on Solar Thermal Conversion Based on Supercritical Natural Convection
,”
Renewable Energy
,
62
, pp.
610
618
.10.1016/j.renene.2013.08.025
8.
Yamaguchi
,
H.
,
Sawada
,
N.
,
Suzuki
,
H.
,
Ueda
,
H.
, and
Zhang
,
X. R.
,
2010
, “
Preliminary Study on a Solar Water Heater Using Supercritical Carbon Dioxide as Working Fluid
,”
ASME J. Sol. Energy Eng.
,
132
(
1
), pp.
101
106
.10.1115/1.4000350
9.
Chen
,
L.
,
Deng
,
B. L.
, and
Zhang
,
X. R.
,
2013
, “
Experimental Study of Trans-Critical and Supercritical CO2 Natural Circulation Flow in a Closed Loop
,”
Appl. Therm. Eng.
,
59
(
1–2
), pp.
1
13
.10.1016/j.applthermaleng.2013.05.017
10.
Chen
,
L.
,
Zhang
,
X. R.
, and
Jiang
,
B.
,
2014
, “
Effects of Heater Orientations on the Natural Circulation and Heat Transfer in a Supercritical CO2 Rectangular Loop
,”
ASME J. Heat Transfer
(in press)10.1115/1.4025543.
11.
Chen
,
L.
,
Zhang
,
X. R.
,
Deng
,
B. L.
, and
Jiang
,
B.
,
2013
, “
Effects of Inclination Angle and Operation Parameters on Supercritical CO2 Natural Circulation Loop
,”
Nucl. Eng. Des.
,
265
, pp.
895
908
.10.1016/j.nucengdes.2013.06.037
12.
Budihardjo
, I
.
, and
Morrison
,
G. L.
,
2009
, “
Performance of Water-in-Glass Evacuated Tube Solar Water Heaters
,”
Sol. Energy
,
83
(
1
), pp.
49
56
.10.1016/j.solener.2008.06.010
13.
Dubey
,
S.
, and
Tiwari
,
G. N.
,
2008
, “
Thermal Modeling of a Combined System of Photovoltaic Thermal (PV/T) Solar Water Heater
,”
Sol. Energy
,
82
(
7
), pp.
602
612
.10.1016/j.solener.2008.02.005
14.
Morrison
,
G. L.
,
Budihardjo
,
I.
, and
Behnia
,
M.
,
2004
, “
Water-in-Glass Evacuated Tube Solar Water Heaters
,”
Sol. Energy
,
76
(
1–3)
, pp.
135
140
.10.1016/j.solener.2003.07.024
15.
Dahl
,
S. D.
, and
Davidson
,
J. H.
,
1997
, “
Performance and Modeling of Thermosyphon Heat Exchangers for Solar Water Heaters
,”
ASME J. Sol. Energy Eng.
,
119
(
3
), pp.
193
200
.10.1115/1.2888018
16.
Mason
,
A. A.
, and
Davidson
,
J. H.
,
1999
, “
Measured Performance and Modeling of an Evacuated-Tube, Integral-Collector-Storage Solar Water Heater
,”
ASME J. Sol. Energy Eng.
,
117
(
3
), pp.
221
228
.10.1115/1.2847803
17.
Alkhamis
,
A. I.
, and
Sherif
,
S. A.
,
1997
, “
Feasibility Study of a Solar-Assisted Heating/Cooling System for an Aquatic Centre in Hot and Humid Climate
,”
Int. J. Energy Res.
,
21
(
9
), pp.
823
839
.10.1002/(SICI)1099-114X(199707)21:9<823::AID-ER303>3.0.CO;2-Q
18.
Zhang
,
X. R.
, and
Yamaguchi
,
H.
,
2008
, “
An Experimental Study on Evacuated Tube Solar Collector Using Supercritical CO2
,”
Appl. Therm. Eng.
,
28
(
10
), pp.
1225
1233
.10.1016/j.applthermaleng.2007.07.013
19.
Zhang
,
X. R.
,
2013
, “
A Preliminary Experimental Investigation on Characteristics of Natural Convection Based on Solar Thermal Collection Using Supercritical Carbon Dioxide
,”
Int. J. Energy Res.
,
37
(
11
), pp.
1349
1360
.10.1002/er.2936
20.
Chen
,
L.
,
Zhang
,
X. R.
,
Okajima
,
J.
, and
Maruyama
,
S.
,
2013
, “
Thermal Relaxation and Critical Instability of Near-Critical Fluid Microchannel Flow
,”
Phys. Rev. E
,
87
(
4
), p.
043016
.10.1103/PhysRevE.87.043016
21.
Chen
,
L.
,
Zhang
,
X. R.
,
Okajima
,
J.
, and
Maruyama
,
S.
,
2014
, “
Abnormal Microchannel Convective Fluid Flow Near the Gas-Liquid Critical Point
,”
Phys. A
,
398
, pp.
10
24
.10.1016/j.physa.2013.11.002
22.
Chen
,
L.
,
Deng
,
B. L.
,
Jiang
,
B.
, and
Zhang
,
X. R.
,
2013
, “
Thermal and Hydrodynamic Characteristics of Supercritical CO2 Natural Circulation in Closed Loops
,”
Nucl. Eng. Des.
,
257
, pp.
21
30
.10.1016/j.nucengdes.2013.01.016
23.
Zhang
,
X. R.
,
Chen
,
L.
, and
Yamaguchi
,
H.
,
2010
, “
Natural Convective Flow and Heat Transfer of Supercritical CO2 in a Rectangular Circulation Loop
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4112
4122
.10.1016/j.ijheatmasstransfer.2010.05.031
24.
Hasan
,
M. M.
,
Afroz
,
A. M.
, and
Tsubaki
,
K.
,
2008
, “
Heat Transfer Coefficients and Pressure Drops During In-Tube Condensation of CO2/DME Mixture Refrigerant
,”
Int. J. Refrig.
,
31
(
8
), pp.
1458
1466
.10.1016/j.ijrefrig.2008.02.009
25.
Koyama
,
S.
,
Takato
,
N.
,
Kuwahara
,
K.
,
Jin
,
D.
,
Xue
,
J.
, and
Miyara
,
A.
,
2006
, “
Experimental Study on the Performance of a Refrigerant Mixture CO2/DME System
,”
JSRAE Annual Conference
, Kyushu, Japan, October 22–26, pp.
133
136
(in Japanese).
26.
Onaka
,
Y.
,
Miyara
,
A.
,
Tsubaki
,
K.
, and
Koyama
,
S.
,
2007
, “
Performance Analysis on Heat Pump Cycle of CO2/DME Mixture Refrigerant
,”
JSRAE Annual Conference
, Tokyo, October 22–24, pp.
333
336
(in Japanese).
27.
Chen
,
L.
,
Zhang
,
X. R.
,
Yamaguchi
,
H.
, and
Liu
,
Z. S.
,
2010
, “
Effect of Heat Transfer on the Instabilities and Transitions of Supercritical CO2 Flow in a Natural Circulation Loop
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4101
4111
.10.1016/j.ijheatmasstransfer.2010.05.030
28.
Chen
,
L.
,
Zhang
,
X. R.
,
Cao
,
S.
, and
Bai
,
H.
,
2012
, “
Study of Trans-Critical CO2 Natural Convection Flow With Unsteady Heat Input and Its Implications on System Control
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
7119
7132
.10.1016/j.ijheatmasstransfer.2012.07.027
29.
Zhang
,
X. R.
,
Yamaguchi
,
H.
,
Fujima
,
K.
,
Enomoto
,
M.
, and
Sawada
,
N.
,
2005
, “
A Feasibility Study of CO2-Based Rankine Cycle Powered by Solar Energy
,”
JSME Int. J., Ser. B
,
48
(
3
), pp.
540
547
.10.1299/jsmeb.48.540
30.
Zhang
,
X. R.
,
Yamaguchi
,
H.
,
Uneno
,
D.
,
Fujima
,
K.
,
Enomoto
,
M.
, and
Sawada
,
N.
,
2006
, “
Analysis of a Novel Solar Energy Powered Rankine Cycle for Combined Power and Heat Generation Using Supercritical Carbon Dioxide
,”
Renewable Energy
,
31
(
12
), pp.
1839
1854
.10.1016/j.renene.2005.09.024
31.
Zhang
,
X. R.
,
Yamaguchi
,
H.
, and
Uneno
,
D.
,
2007
, “
Experimental Study on the Performance of Solar Rankine System Using Supercritical CO2
,”
Renewable Energy
,
32
(
15
), pp.
2617
2628
.10.1016/j.renene.2007.01.003
32.
Zhang
,
X. R.
, and
Yamaguchi
,
H.
,
2007
, “
Forced Convection Heat Transfer of Supercritical Carbon Dioxide in a Horizontal Circular Tube
,”
J. Supercrit. Fluids
,
41
(
3
), pp.
412
420
.10.1016/j.supflu.2006.11.003
33.
Chen
,
L.
, and
Zhang
,
X. R.
,
2014
, “
Heat Transfer and Various Convection Structures of Near-Critical CO2 Flow in Microchannels
,”
Appl. Therm. Eng.
(in press). 10.1016/j.applthermaleng.2013.11.036
34.
Chen
,
L.
, and
Zhang
,
X. R.
,
2011
, “
Simulation of Heat Transfer and System Behavior in a Supercritical CO2 Based Thermosyphon: Effect of Pipe Diameter
,”
ASME J. Heat Transfer
,
133
(
12
), p.
122505
.10.1115/1.4004434
You do not currently have access to this content.