In order to utilize sustainable solar energy, cyclic operations of syngas production by methane reforming (reduction) and subsequent hydrogen production by water splitting (oxidation) were performed by using simulated solar-light irradiation to ZrO2-supported CeO2 particles which were coated on a SiC ceramic foam disk. This redox process is a promising chemical pathway for storage and transportation of solar heat by converting solar energy to chemical energy. By properly adjusting the methane reforming time, carbon deposition due to the undesirable methane decomposition could be avoided. The produced syngas had the H2/CO ratio of 2.0, which is suitable for the Fischer–Tropsch synthesis or methanol synthesis, and the produced pure hydrogen can be used for fuel cells. When the cyclic reactions were repeated several times at two temperatures (800 °C, 900 °C), the conversion of CeO2 and the H2 yield were reasonable and were maintained nearly constant from the second cycle, exhibiting good stability of the redox process.

References

References
1.
Bohmer
,
M.
,
Langnickel
,
U.
, and
Sanchez
,
M.
,
1991
, “
Solar Steam Reforming of Methane
,”
Sol. Energy Mater.
,
24
(1–4), pp.
441
448
.10.1016/0165-1633(91)90081-U
2.
Tanashev
,
Y. Y.
,
Fedoseev
,
V. I.
, and
Aristov
,
Y. I.
,
1997
, “
High-Temperature Catalysis Driven by the Direct Action of Concentrated Light or a High-Density Electron Beam
,”
Catal. Today
,
29
(3), pp.
251
260
.10.1016/S0920-5861(97)00106-5
3.
Aristov
,
Y. I.
,
Fedoseev
,
V. I.
, and
Parmon
,
V. N.
,
1997
, “
High-Density Conversion of Light Energy Via Direct Illumination of Catalyst
,”
Int. J. Hydrogen Energy
,
22
(9), pp.
869
874
.10.1016/S0360-3199(96)00238-8
4.
Kodama
,
T.
,
Shimizu
,
T.
,
Satoh
,
T.
, and
Shimizu
,
K. I.
,
2003
, “
Stepwise Production of CO-Rich Syngas and Hydrogen Via Methane Reforming by a WO3-Redox Catalyst
,”
Energy
,
28
(11), pp.
1055
1068
.10.1016/S0360-5442(03)00093-8
5.
Fletcher
,
E. A.
,
2000
, “Solarthermal Processing: A Review,”
ASME J. Sol. Energy Eng.
,
123
(2), pp. 63–74.10.1115/1.1349552
6.
Grasse
,
W.
,
Tyner
,
C. E.
, and
Steinfeld
,
A.
,
1999
, “
International R&D Collaboration in Developing Solar Thermal Technologies for Electric Power and Solar Chemistry
,”
J. Phys. IV Fr.
,
9
(3), pp.
3
9
.10.1051/jp4:1999302
7.
Kodama
,
T.
,
Ohtake
,
H.
,
Matsumoto
,
S.
,
Aoki
,
A.
,
Shimizu
,
T.
, and
Kitayama
,
Y.
,
2000
, “
Thermochemical Methane Reforming Using a Reactive WO3/W Redox System
,”
Energy
,
25
(5), pp.
411
425
.10.1016/S0360-5442(99)00084-5
8.
Shimizu
,
T.
,
Shimizu
,
K.
,
Kitayama
,
Y.
, and
Kodama
,
T.
,
2001
, “
Thermochemical Methane Reforming Using WO3 as an Oxidant Below 1173 K by a Solar Furnace Simulator
,”
Sol. Energy
,
71
(5), pp.
315
324
.10.1016/S0038-092X(01)00058-5
9.
Kodama
,
T.
,
Shimizu
,
T.
,
Satoh
,
T.
,
Nakata
,
M.
, and
Shimizu
,
K. I.
,
2002
, “
Stepwise Production of CO-Rich Syngas and Hydrogen Via Solar Methane Reforming by Using a Ni(II)-Ferrite System
,”
Sol. Energy
,
73
(5), pp.
363
374
.10.1016/S0038-092X(02)00112-3
10.
Kang
,
K. S.
,
Kim
,
C. H.
,
Cho
,
W. C.
,
Bea
,
K. K.
,
Woo
,
S. W.
, and
Park
,
C. S.
,
2008
, “
Reduction Characteristics of CuFe2O4 and Fe3O4 by Methane; CuFe2O4 as and Oxidant for Two-Step Thermochemical Methane Reforming
,”
Int. J. Hydrogen Energy
,
33
(17), pp.
4560
4568
.10.1016/j.ijhydene.2008.05.054
11.
Go
,
K. S.
,
Son
,
S. R.
, and
Kim
,
S. D.
,
2008
, “
Reaction Kinetics of Reduction and Oxidation of Metal Oxides for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
33
(21), pp.
5986
5995
.10.1016/j.ijhydene.2008.05.039
12.
Weidenkaff
,
A.
,
Steinfeld
,
A.
,
Wokaun
,
A.
,
Auer
,
P. O.
,
Eichler
,
B.
, and
Reller
,
A.
,
1999
, “
Direct Solar Thermal Dissociation of Zinc in the Presence of Condensation and Crystallization of Zinc in the Presence of Oxygen
,”
Sol. Energy
,
65
(1), pp.
59
69
.10.1016/S0038-092X(98)00088-7
13.
Weidenkaff
,
A.
,
Reller
,
A.
,
Wokaun
,
A.
, and
Steinfeld
,
A.
,
2000
, “
Thermogravimetric Analysis of the ZnO/Zn Water Splitting Cycle
,”
Thermochim. Acta
,
359
(1), pp.
65
75
.10.1016/S0040-6031(00)00508-6
14.
Abanades
,
S.
, and
Flamant
,
G.
,
2006
, “
Thermochemical Hydrogen Production From a Two-Step Solar-Driven Water-Splitting Cycle Based on Cerium Oxides
,”
Sol. Energy
,
80
(12), pp.
1611
1623
.10.1016/j.solener.2005.12.005
15.
Sim
,
A.
,
Cant
,
N. W.
, and
Trimm
,
D. L.
,
2010
, “
Ceria-Zirconia Stabilized Tungsten Oxides for the Production of Hydrogen by the Methane-Water Redox Cycle
,”
Int. J. Hydrogen Energy
,
35
(17), pp.
8953
8961
.10.1016/j.ijhydene.2010.06.062
16.
Jeong
,
H. H.
,
Kwak
,
J. H.
,
Han
,
G. Y.
, and
Yoon
,
K. J.
,
2011
, “
Stepwise Production of Syngas and Hydrogen Through Methane Reforming and Water Splitting by Using a Cerium Oxide Redox System
,”
Int. J. Hydrogen Energy
,
36
(23), pp.
15221
15230
.10.1016/j.ijhydene.2011.08.079
17.
Gokon
,
N.
,
Osawa
,
Y.
,
Nakazawa
,
D.
, and
Kodama
,
T.
,
2009
, “
Kinetics of CO2 Reforming of Methane by Catalytically Activated Metallic Foam Absorber for Solar Receiver-Reactors
,”
Int. J. Hydrogen Energy
,
34
(4), pp.
1787
1800
.10.1016/j.ijhydene.2008.12.018
18.
Gokon
,
N.
,
Yamawaki
,
Y.
,
Nakazawa
,
D.
, and
Kodama
,
T.
,
2010
, “
Ni/MgO-Al2O3 and Ni-Mg-O Catalyzed SiC Foam Absorbers for High Temperature Solar Reforming of Methane
,”
Int. J. Hydrogen Energy
,
35
(14), pp.
7441
7453
.10.1016/j.ijhydene.2010.04.040
19.
Kwak
,
J. H.
,
2012
, “
Zirconia-Supported Tungsten Oxides for Cyclic Production of Syngas and Hydrogen by Methane Reforming and Water Splitting
,” Ph.D. thesis, Sungkyunkwan University, Suwon, South Korea.
20.
Lox
,
E. S. J.
, and
Engler
,
B. H.
,
1997
, “
Environmental Catalysis-Mobile Sources
,”
Handbook of Heterogeneous Catalysis
, Vol.
4
,
G.
Ertl
,
H.
Knözinger
, and
J.
Weitkamp
, eds.,
VCH
,
Weinheim
, Germany, pp.
1581
.
You do not currently have access to this content.