An optimal control approach for a wind turbine drivetrain with a variable ratio gearbox is presented. The objective is to find the optimum shifting sequence of the variable ratio gearbox in order to maximize power generation and extend gear life. The employment of a variable ratio gearbox enhances the capabilities of the wind turbine to cope with wind speed variations. Based on the authors' preliminary study, the gear ratios of the variable ratio gearbox were carefully selected to maximize the wind energy capture. In this paper, a new control approach is proposed to achieve both extended gear service life and optimal energy harvesting. This new approach finds the gear shifting sequence that will minimize the tangential force on the gear tooth while maximizing the wind energy capture. The wind turbine drivetrain with a variable ratio gearbox is modeled and simulation results based on recorded wind data of different wind classes are presented and compared.

References

References
1.
Lewis
,
N.
,
2007
, “
Powering the Planet
,”
Mater. Res. Soc. Bull.
,
32
(
10
), pp.
808
820
.10.1557/mrs2007.168
2.
Gipe
,
P.
,
2004
,
Wind Power: Renewable Energy for Home, Farm, and Business
,
Chelsea Green Publishing Co.
,
Post Mills, VT
.
3.
Lantz
,
E.
,
Wiser
,
R.
, and
Hand
,
M.
,
2012
, “
The Past and Future Cost of Wind Energy
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-6A20-53510.
4.
Bolinger
,
M.
, and
Wiser
,
R.
,
2008
, “
Wind Power Price Trends in the United States: Struggling to Remain Competitive in the Face of Strong Growth
,”
Energy Policy
,
37
(
3
), pp.
1061
1071
.10.1016/j.enpol.2008.10.053
5.
Oyague
,
F.
,
2009
, “
Gearbox Modeling and Load Simulation of a Baseline 750-kW Wind Turbine Using State-of-the-Art Simulation Codes
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-500-41160.
6.
Johnson
,
K.
,
2004
, “
Adaptive Torque Control of Variable Speed Wind Turbines
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-500-36265.
7.
Sovacool
,
B. K.
,
2009
, “
The Intermittency of Wind, Solar, and Renewable Electricity Generators: Technical Barrier or Rhetorical Excuse?
,”
Util. Policy
,
17
(
3–4
), pp.
288
296
.10.1016/j.jup.2008.07.001
8.
Pao
,
L.
, and
Johnson
,
K.
,
2009
, “
A Tutorial on the Dynamics and Control of Wind Turbines and Wind Farms
,”
American Control Conference
(
ACC '09
), St. Louis, MO, June 10–12, pp.
2076
2089
.10.1109/ACC.2009.5160195
9.
Polinder
,
H.
,
Van der Pijl
,
F.
,
De Vilder
,
G.-J.
, and
Tavner
,
P.
,
2006
, “
Comparison of Direct-Drive and Geared Generator Concepts for Wind Turbines
,”
IEEE Trans. Energy Convers.
,
21
(
3
), pp.
725
733
.10.1109/TEC.2006.875476
10.
Bywaters
,
G.
,
John
,
V.
,
Lynch
,
J.
,
Mattila
,
P.
,
Norton
,
G.
,
Stowell
,
J.
,
Salata
,
M.
,
Labath
,
O.
,
Chertok
,
A.
, and
Hablanian
,
D.
,
2004
, “
Northern Power Systems WindPACT Drive Train Alternative Design Study Report
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/SR-500-35524.
11.
Muljadi
,
E.
, and
Butterfield
,
C.
,
2001
, “
Pitch-Controlled Variable Speed Wind Turbine Generation
,”
IEEE Trans. Ind. Appl.
,
37
(
1
), pp.
240
246
.10.1109/28.903156
12.
Marques
,
J.
,
Pinheiro
,
H.
,
Gründling
,
H.
,
Pinheiro
,
J.
, and
Hey
,
H.
,
2003
, “
A Survey on Variable-Speed Wind Turbine System
,” Congresso Brasileiro de Eletrônica de Potência (COBEP), Fortaleza-CE, Brazil. September 21–24, pp. 732–738.
13.
Slootweg
,
J.
, and
de Vries
,
E.
,
2003
, “
Inside Wind Turbines—Fixed vs. Variable Speed
,”
Renewable Energy World
,
6
(
1
), pp.
30
40
.
14.
Mangialardi
,
L.
, and
Mantriota
,
G.
,
1992
, “
The Advantages of Using Continuously Variable Transmissions in Wind Power Systems
,”
Renewable Energy
,
2
(
3
), pp.
201
209
.10.1016/0960-1481(92)90033-Y
15.
Rex
,
A.
, and
Johnson
,
K.
,
2009
, “
Methods for Controlling a Wind Turbine System With a Continuously Variable Transmission in Region 2
,”
ASME J. Sol. Energy Eng.
,
131
(
3
), p. 031012.10.1115/1.3139145
16.
Cotrell
,
J.
,
2005
, “
Assessing the Potential of a Mechanical Continuously Variable Transmission for Wind Turbines
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/CP-500-38212.
17.
Peeters
,
J.
,
Vandepitte
,
D.
, and
Sas
,
P.
,
2006
, “
Analysis of Internal Drive Train Dynamics in a Wind Turbine
,”
Wind Energy
,
9
(
1–2
), pp.
141
161
.10.1002/we.173
18.
Musial
W.
, and
Butterfield
,
S.
,
2007
, “
Improving Wind Turbine Gearbox Reliability
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/CP-500-41548.
19.
Oyague
,
F.
,
Butterfield
,
C.
, and
Sheng
,
S.
,
2009
, “
Gearbox Reliability Collaborative Analysis Round Robin
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/CP-500-45325.
20.
Hall
,
J.
,
Mecklenborg
,
C.
,
Chen
,
D.
, and
Pratap
,
S.
,
2011
, “
Wind Energy Conversion With a Variable-Ratio Gearbox: Design and Analysis
,”
Renewable Energy
,
36
(
3
), pp.
1075
1080
.10.1016/j.renene.2010.08.037
21.
Shaltout
,
M. L.
,
Zhao
,
N.
,
Hall
,
J.
, and
Chen
,
D.
,
2012
, “
Wind Turbine Gearbox Control for Maximum Energy Capture and Prolonged Gear Life
,” 5th ASME Dynamic Systems and Control Conference, Ft. Lauderdale, FL, October 17-19,
ASME
Paper No. DSCC2012-MOVIC2012-8719, pp.
33
39
.10.1115/DSCC2012-MOVIC2012-8719
22.
Hau
,
E.
,
2006
,
Wind Turbines: Fundamentals, Technologies, Application, Economics
,
2nd ed.
,
Springer
,
New York
.
23.
Stiebler
,
M.
,
2008
,
Wind Energy Systems for Electric Power Generation
,
Springer
,
Berlin
.
24.
Heier
,
S.
,
2006
,
Grid Integration of Wind Energy Conversion Systems
,
2nd ed.
,
Wiley, Hoboken, NJ
.
25.
Slootweg
,
J.
,
Polinder
,
H.
, and
Kling
,
W.
,
2003
, “
Representing Wind Turbine Electrical Generating Systems in Fundamental Frequency Simulations
,”
IEEE Trans. Energy Convers.
,
18
(
4
), pp.
516
524
.10.1109/TEC.2003.816593
26.
Anandavel
,
P.
,
Rajambal
,
K.
, and
Chellamuthu
,
C.
,
2005
, “
Power Optimization in a Grid-Connected Wind Energy Conversion System
,”
International Conference on Power Electronics and Drives Systems
(
PEDS 2005
), Kuala Lumpur, Malaysia, November 28-December 1, pp.
1617
1621
.10.1109/PEDS.2005.1619947
27.
AGMA
,
1988
, “
Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth
,” American Gear Manufacturers Association (AGMA), Alexandria, VA, Standard No. ANSI/AGMA 2001-B88.
28.
AGMA
,
1993
, “
Design Guide for Vehicle Spur and Helical Gears
,” American Gear Manufacturers Association (AGMA), Alexandria, VA, Standard No. AGMA 6002-B93.
29.
Manwell
,
J.
,
2009
,
Wind Energy Explained: Theory, Design and Application
,
2nd ed.
,
Wiley
,
Chichester, UK
.
30.
Harris
,
M.
,
Hand
,
M.
, and
Wright
,
A.
,
2006
, “
LIDAR for Turbine Control
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-500-39154.
31.
Hand
,
M.
,
Wright
,
A.
,
Fingersh
,
L.
, and
Harris
,
M.
,
2006
, “
Advanced Wind Turbine Controllers Attenuate Loads When Upwind Velocity Measurements are Inputs
,”
44th AIAA/ASME Wind Energy Symposium
, Reno, NV, January 9–12,
AIAA
Paper No. 2006-603.10.2514/6.2006-603
You do not currently have access to this content.