Unglazed transpired collector (UTC) is a kind of solar air heater is used for different applications such as air ventilation, preheating, and crop drying. Passing air through the perforated plate, which acts as an absorber, is the main mechanism of heat transfer and air preheating in UTCs. In order to design UTCs and determine the effective parameters, energy and exergy analyses are performed. A mathematical model which is solved using an iterative method by a computer code has been developed. In order to validate the present model, this solution is compared with numerical and experimental results available in the literature, where a good agreement is obtained. After verifying the model, the code has been used to study the influence of the effective parameters on the performance of the system. The results show that the exergetic analysis is very important to design.

References

References
1.
Kutscher
,
C. F.
,
Christensen
,
C. B.
, and
Barker
,
G. M.
,
1993
, “
Unglazed Transpired Solar Collectors: Heat Loss Theory
,”
ASME J. Sol. Energy Eng.
,
115
(
3
), pp.
182
188
.10.1115/1.2930047
2.
Hollick
,
J. C.
,
1994
, “
Unglazed Solar Wall Air Heaters
,”
Renewable Energy
,
5
(
1–4
), pp.
415
421
.10.1016/0960-1481(94)90408-1
3.
Kutscher
,
C. F.
,
1994
, “
Heat Exchange Effectiveness and Pressure Drop for Air Flow Through Perforated Plates With and Without Crosswind
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
391
399
.10.1115/1.2911411
4.
Summers
,
D. N.
,
1995
, “
Thermal Simulation and Economic Assessment of Unglazed Transpired Collector Systems
,” Master thesis, University of Wisconsin, Madison, WI.
5.
Gunnewiek
,
L. H.
,
Brundrett
,
E.
, and
Hollands
,
K. G. T.
,
1996
, “
Flow Distribution in Unglazed Transpired Plate Solar Air Heaters of Large Area
,”
Sol. Energy
,
58
(
4–6
), pp.
227
237
.10.1016/S0038-092X(96)00083-7
6.
Dymond
,
C.
, and
Kutscher
,
C.
,
1997
, “
Development of a Flow Distribution and Design Model for Transpired Solar Collectors
,”
Sol. Energy
,
60
(
5
), pp.
291
300
.10.1016/S0038-092X(96)00157-0
7.
Van Decker
,
G. W. E.
,
Hollands
,
K. G. T.
, and
Brunger
,
A. P.
,
2001
, “
Heat-Exchange Relations for Unglazed Transpired Solar Collectors With Circular Holes on a Square or Triangular Pitch
,”
Sol. Energy
,
71
(
1
), pp.
33
45
.10.1016/S0038-092X(01)00014-7
8.
Gawlik
,
K.
, and
Kutscher
,
C.
,
2002
, “
Wind Heat Loss From Corrugated, Transpired Solar Collectors
,”
ASME J. Sol. Energy Eng.
,
124
, pp.
256
261
.10.1115/1.1487886
9.
Gawlik
,
K.
,
Christensen
,
C.
, and
Kutscher
,
C.
,
2005
, “
A Numerical and Experimental Investigation of Low-Conductivity Unglazed, Transpired Solar Air Heaters
,”
ASME J. Sol. Energy Eng.
,
127
(
1
), pp.
153
155
.10.1115/1.1823494
10.
Leon
,
M. A.
, and
Kumar
,
S.
,
2007
, “
Mathematical Modeling and Thermal Performance Analysis of Unglazed Transpired Solar Collectors
,”
Sol. Energy
,
81
(
1
), pp.
62
75
.10.1016/j.solener.2006.06.017
11.
Greig
,
D.
,
Siddiqui
,
K.
, and
Karava
,
P.
,
2012
, “
An Experimental Investigation of The Flow Structure Over a Corrugated Waveform in a Transpired Air Collector
,”
Int. J. Heat Fluid Flow
,
38
, pp.
133
144
.10.1016/j.ijheatfluidflow.2012.07.003
12.
Badache
,
M.
,
Rousse
,
D. R.
,
Hallé
,
S.
, and
Quesada
,
G.
,
2013
, “
Experimental and Numerical Simulation of a Two-Dimensional Unglazed Transpired Solar Air Collector
,”
Sol. Energy
,
93
, pp.
209
219
.10.1016/j.solener.2013.02.036
13.
Incropera
,
F. P.
, and
De Witt
,
D. P.
,
1985
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
New York
.
14.
Petela
,
R.
,
1964
, “
Exergy of Heat Radiation
,”
ASME J. Heat Transfer
,
86
(
2
), pp.
187
192
.10.1115/1.3687092
15.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
1991
,
Solar Engineering of Thermal Processes
,
John Wiley & Sons
,
New York
.
16.
Walton
,
G. N.
,
1983
,
Thermal Analysis Research Program Reference Manual
,
National Bureau of Standards
,
Washington, DC
.
17.
McAdams
,
W. H.
,
1954
,
Heat Transmission
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.