The objective of this work is to develop and test a set of general guidelines for choosing parameters to be used in the state-of-the-art actuator line method (ALM) for modeling wind turbine blades in computational fluid dynamics (CFD). The actuator line method is being increasingly used for the computation of wake interactions in large wind farms in which fully blade-resolving simulations are expensive and require complicated rotating meshes. The focus is on actuator line behavior using fairly isotropic grids of low aspect ratio typically used for large-eddy simulation (LES). Forces predicted along the actuator lines need to be projected onto the flow field as body forces, and this is commonly accomplished using a volumetric projection. In this study, particular attention is given to the spanwise distribution of the radius of this projection. A new method is proposed where the projection radius varies along the blade span following an elliptic distribution. The proposed guidelines for actuator line parameters are applied to the National Renewable Energy Laboratory's (NREL's) Phase VI rotor and the NREL 5-MW turbine. Results obtained are compared with available data and the blade-element code XTurb-PSU. It is found that the new criterion for the projection radius leads to improved prediction of blade tip loads for both blade designs.

References

References
1.
“20% Wind Energy by 2030,” 2008, US Department of Energy Executive summary, DOE/GO-102008-2578
, December
2008
.
2.
“Eastern Wind Integration and Transmission Study,” 2011, prepared for the National Renewable Energy Laboratory by the EnerNex Corporation, Report No. NREL/SR-5500-47078
, February
2011
.
3.
“Western Wind and Solar Integration Study,” 2010, prepared for the National Renewable Energy Laboratory by GE Energy, Report No. NREL/SR-550-47434
, May
2010
.
4.
Churchfield
,
M. J.
,
Lee
,
S.
,
Michalakes
,
J.
, and
Moriarty
,
P. J.
,
2012
, “
A Numerical Study of the Effects of Atmospheric and Wake Turbulence on Wind Turbine Dynamics
,”
J. Turbulence
,
13
(
12
), pp.
1
32
.10.1080/14685248.2012.668191
5.
Jensen
,
L. E.
,
2007
, “
Array Efficiency at Horns Rev and the Effect of Atmospheric Stability
,”
Dong Energy, Fredericia, Denmark
.
6.
Kelley
,
N. D.
,
2011
, “
Turbulence-Turbine Interactions: The Basis for the Development of the TurbSim Stochastic Simulator
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-5000-52353.
7.
Katic
,
I.
,
Hoejstrup
,
J.
, and
Jensen
,
N. O.
,
1986
, “
A Simple Model for Cluster Efficiency
,”
European Wind Energy Association (EWEC'86)
, Rome, Italy, October 7–9, pp.
407
410
.
8.
Rathmann
,
O.
,
Frandsen
,
S. T.
, and
Barthelmie
,
R. J.
,
2007
, “
Wake Modelling for Intermediate and Large Wind Farms
,”
European Wind Energy Conference and Exhibition
, Milan, Italy, May 7–10.
9.
“WAsP—The Wind Atlas Analysis and Application Program,” 2013, Risoe National Laboratory for Sustainable Energy, Roskilde
, Denmark, retrieved on April 23,
2013
, http://www.wasp.dk/Products/WAsP.aspx
10.
Crespo
,
A.
,
Hernandez
,
J.
,
Fraga
,
E.
, and
Andreu
,
C.
,
1988
, “
Experimental Validation of the UPM Computer Code to Calculate Wind Turbine Wakes and Comparison With Other Models
,”
J. Wind Eng. Ind. Aerodyn.
,
27
, pp.
77
88
.10.1016/0167-6105(88)90025-6
11.
Sørensen
,
J. N.
,
Shen
,
W. Z.
, and
Munduate
,
X.
,
1998
, “
Analysis of Wake States by a Full-Field Actuator Disc Model
,”
Int. J. Numer. Methods Fluids
,
1
, pp.
73
78
.10.1002/(SICI)1099-1824(199812)1:2<73::AID-WE12>3.0.CO;2-L
12.
Leclerc
,
C.
, and
Masson
,
C.
,
2004
, “
Toward Blade-Tip Vortex Simulation With an Actuator-Lifting Surface Model
,”
AIAA
Paper No. 2004-0667. 10.2514/6.2004-667
13.
Leclerc
,
C.
, and
Masson
,
C.
,
2005
, “
Wind Turbine Performance Predictions Using a Differential Actuator-Lifting Disk Model
,”
ASME J. Sol. Energy Eng.
,
127
, pp.
200
208
.10.1115/1.1889466
14.
Réthoré
,
P. E.
,
Sørensen
,
N. N.
, and
Zahle
,
F.
,
2010
,
Validation of an Actuator Disc Model
,
European Wind Energy Conference & Exhibition (EWEC), Warsaw, Poland, April 20–23.
15.
Mikkelsen
,
R.
,
2003
, “
Actuator Disc Methods Applied to Wind Turbines
,” Ph.D. thesis, Technical University of Denmark, Lyngby, Denmark.
16.
Ivanell
,
S.
,
Mikkelsen
,
R.
,
Sørensen
,
J.
, and
Henningson
,
D.
,
2009
, “
ACD Modelling of Wake Interaction in the Horns Rev Wind Farm
,”
Extended Abstracts for Euromech Colloquium 508 on Wind Turbine Wakes
,
European Mechanics Society
,
Madrid, Spain
.
17.
Meyers
,
J.
, and
Meneveau
,
C.
,
2010
, “
Large Eddy Simulations of Large Wind-Turbine Arrays in the Atmospheric Boundary Layer
,”
AIAA
Paper No. 2010-0827. 10.2514/6.2010-827
18.
Singer
,
M.
,
Mirocha
,
J.
,
Lundquist
,
J.
, and
Cleve
,
J.
,
2010
, “
Implementation and Assessment of Turbine Wake Models in the Weather Research and Forecasting Model for Both Mesoscale and Large-Eddy Simulation
,” International Symposium on Computational Wind Engineering, Chapel Hill, NC, May 23–27, Paper No. LLNL-CONF-425048.
19.
Stovall
,
T. D.
,
Pawlas
,
G.
, and
Moriarty
,
P. J.
,
2010
, “
Wind Farm Wake Simulations in OpenFOAM
,”
AIAA
Paper No. 2010-0825. 10.2514/6.2010-825
20.
Sørensen
,
J. N.
, and
Shen
,
W. Z.
,
2002
, “
Numerical Modeling of Wind Turbine Wakes
,”
ASME J. Fluids Eng.
,
124
, pp.
393
399
.10.1115/1.1471361
21.
Troldborg
,
N.
,
2008
, “
Actuator Line Modeling of Wind Turbine Wakes
,” Ph. D. thesis, Technical University of Denmark, Lyngby, Denmark.
22.
Troldborg
,
N.
,
Sørensen
,
J. N.
, and
Mikkelsen
,
R.
,
2007
, “
Actuator Line Simulation of Wake of Wind Turbine Operating in Turbulent Inflow
,”
J. Phys.: Conf. Ser.
,
75
, p.
012063
. 10.1088/1742-6596/75/1/012063
23.
Troldborg
,
N.
,
Sørensen
,
J.
, and
Mikkelsen
,
R.
,
2010
, “
Numerical Simulations of Wake Characteristics of a Wind Turbine in Uniform Flow
,”
Wind Energy
,
13
, pp.
86
99
.10.1002/we.345
24.
Sibuet Watters
,
C.
, and
Masson
,
C.
,
2010
, “
Modelling of Lifting-Device Aerodynamics Using the Actuator Surface Concept
,”
Int. J. Numer. Methods Fluids
,
62
(
11
), pp.
1264
1298
. 10.1002/fld.2064
25.
Lu
,
H.
, and
Porté-Agel
,
F.
,
2011
, “
Large-Eddy Simulation of a Very Large Wind Farm in a Stable Atmospheric Boundary Layer
,”
Phys. Fluids
,
23
, p.
065101
.10.1063/1.3589857
26.
Conzemius
,
B.
,
Lu
,
H.
,
Chamorro
,
L.
,
Wu
,
Y.-T.
, and
Porte-Agel
,
F.
,
2010
, “
Development and Testing of a Wind Farm Simulator at an Operating Wind Farm
,”
AWEA 2010 Wind Power Conference and Exhibition
, Dallas, TX, May 23–26.
27.
OpenFOAM
, 2012, ESI Group-OpenCFD, Ver. 2.0.x, retrieved on Dec. 13,
2012
, http:// www.openfoam.org/git.php
28.
Churchfield
,
M. J.
,
Moriarty
,
P. J.
,
Vijayakumar
,
G.
, and
Brasseur
,
J.
,
2010
, “
Wind Energy-Related Atmospheric Boundary-Layer Large-Eddy Simulation Using OpenFOAM
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/CP-500-48905.
29.
Churchfield
,
M. J.
,
2011
, “
Wind Energy/Atmospheric Boundary Layer Tools and Tutorials
,” 6th OpenFOAM Workshop, The Pennsylvania State University, State College, PA, June 13–16.
30.
Churchfield
,
M. J.
,
Lee
,
S.
,
Moriarty
,
P. J.
,
Martínez
,
L. A.
,
Leonardi
,
S.
,
Vijayakumar
,
G.
, and
Brasseur
,
J. G.
,
2012
, “
A Large-Eddy Simulation of Wind-Plant Aerodynamics
,”
AIAA
Paper No. 2012-0537. 10.2514/6.2012-537
31.
Dobrev
,
I.
,
Massouh
,
F.
, and
Rapin
,
M.
,
2007
, “
Actuator Surface Hybrid Model
,”
J. Phys. Conf. Ser.
,
75
, p.
012019
.10.1088/1742-6596/75/1/012019
32.
Shen
,
W. Z.
,
Zhang
,
J. H.
, and
Sorensen
,
J. N.
,
2009
, “
The Actuator Surface Model: A New Navier-Stokes Based Model for Rotor Computations
,”
ASME J. Sol. Energy Eng.
,
131
(
1
), p.
011002
.10.1115/1.3027502
33.
Martínez
,
L. A.
,
Leonardi
,
S.
,
Churchfield
,
M. J.
, and
Moriarty
,
P. J.
,
2012
, “
A Comparison of Actuator Disk and Actuator Line Wind Turbine Models and Best Practices for Their Use
,”
AIAA
Paper No. 2012-0900. 10.2514/6.2012-900
34.
Jha
,
P. K.
,
Churchfield
,
M. J.
,
Moriarty
,
P. J.
, and
Schmitz
,
S.
,
2013
, “
Accuracy of State-of-the-Art Actuator-Line Modeling for Wind Turbine Wakes
,”
AIAA
Paper No. 2013-0608. 10.2514/6.2013-608
35.
Glauert
,
H.
,
1985
,
Airplane Propellers
,
Dover
,
New York
, pp.
251
268
.
36.
Shen
,
W. Z.
,
Zhu
,
W. J.
, and
Sørensen
,
J. N.
,
2012
, “
Actuator Line/Navier-Stokes Computations for the MEXICO Rotor: Comparison With Detailed Measurements
,”
Wind Energy
,
15
(
5
), pp.
811
825
.10.1002/we.510
37.
Shen
,
W. Z.
,
Mikkelsen
,
R.
,
Sørensen
,
J. N.
, and
Bak
,
C.
,
2005
, “
Tip Loss Corrections for Wind Turbine Computations
,”
Wind Energy
,
8
(
4
), pp.
457
475
.10.1002/we.153
38.
Shen
,
W. Z.
,
Sørensen
,
J. N.
, and
Mikkelsen
,
R.
,
2005
, “
Tip Loss Corrections for Actuator/Navier-Stokes Computations
,”
ASME J. Sol. Energy Eng.
,
127
(
2
), pp.
209
213
.10.1115/1.1850488
39.
Shives
,
M.
, and
Crawford
,
C.
,
2012
, “
Mesh and Load Distribution Requirements for Actuator Line CFD Simulations
,”
Wind Energy
,
15
, pp.
1183
1196
.10.1002/we.1546
40.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-500-38060.
41.
Schrenk
,
O.
,
1940
, “
A Simple Approximation Method for Obtaining the Spanwise Lift Distribution
,” NACA TM No. 948.
42.
Hand
,
M. M.
,
Simms
,
D. A.
,
Fingersh
,
L. J.
,
Jager
,
D. W.
,
Cotrell
,
J. R.
,
Schreck
,
S.
, and
Larwood
,
S. M.
,
2001
, “
Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-500-29955.
43.
Issa
,
R. I.
,
1985
, “
Solution of the Implicitly Discretized Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
, pp.
40
65
.10.1016/0021-9991(86)90099-9
44.
Rhie
,
C. M.
, and
Chow
W. L.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
(
11
), pp.
1525
1532
.10.2514/3.8284
45.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
,
91
, pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
46.
Wesseling
,
P.
,
2001
, “
Elements of Computational Fluid Dynamics
,” Lecture Notes WI 4011, TU Delft, Delft, Netherlands.
47.
Schmitz
,
S.
,
2012
, “
XTurb-PSU: A Wind Turbine Design and Analysis Tool
,” http://www.aero.psu.edu/Faculty_Staff/schmitz/XTurb/XTurb.html
48.
Jha
,
P. K.
,
Brillembourg
,
D.
, and
Schmitz
,
S.
,
2012
, “
Wind Turbines Under Atmospheric Icing Conditions—Ice Accretion Modeling, Aerodynamics, and Control Strategies for Mitigating Performance Degradation
,”
AIAA
Paper No. 2012-1287. 10.2514/6.2012-1287
49.
Moriarty
,
P. J.
, and
Hansen
,
A. C.
,
2005
, “
AeroDyn Theory Manual
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-500-36881, http://www.nrel.gov/docs/fy05osti/36881.pdf
50.
Chattot
,
J. J.
,
2002
, “
Design and Analysis of Wind Turbines Using Helicoidal Vortex Model
,”
Comput. Fluid Dyn. J.
,
11
(
1
), pp.
50
54
.
51.
Du
,
Z.
, and
Selig
,
M. S.
,
1998
, “
A 3D Stall-Delay Model for Horizontal Axis Wind Turbine Performance Prediction
,”
36th AIAA Aerospace Sciences Meeting and Exhibit, ASME Wind Energy Symposium
, Reno, NV, January 12–15,
AIAA
Paper No. 98-0021.10.2514/6.1998-21
52.
Hansen
,
C.
,
2005
,
AirfoilPrep, NWTC Design Code, Ver. 2.0, National Renewable Energy Laboratory, Golden, CO, last modified March 9
, 2010 and retrieved on Dec. 7,
2012
, http://wind.nrel.gov/designcodes/preprocessors/airfoilprep/
53.
Schmitz
,
S.
, and
Chattot
,
J. J.
,
2005
, “
A Parallelized Couple Navier–Stokes/Vortex-Panel Solver
,”
ASME J. Sol. Energy Eng.
,
127
(
4
), pp.
475
487
.10.1115/1.2035707
You do not currently have access to this content.