The geographical location (Latitude: 24 deg 28′ N and Longitude: 54 deg 22′ E) of Abu Dhabi city in the United Arab Emirates (UAE) favors the development and utilization of solar energy. This paper presents an artificial neural network (ANN) approach for the estimation of monthly mean global solar radiation (GSR) on a horizontal surface in Abu Dhabi. The ANN models are presented and implemented on a 16-yr measured meteorological data set for Abu Dhabi comprising the maximum daily temperature, mean daily wind speed, mean daily sunshine hours, and mean daily relative humidity between 1993 and 2008. The meteorological data between 1993 and 2003 are used for training the ANN and data between 2004 and 2008 are used for testing the estimated values. Multilayer perceptron (MLP) and radial basis function (RBF) are used as ANN learning algorithms. The results attest to the capability of ANN techniques and their ability to produce accurate estimation models.

References

References
1.
Assi
,
A.
, and
Jama
,
M.
,
2010
, “
Estimating Global Solar Radiation on Horizontal From Sunshine Hours in Abu Dhabi–UAE. Advances in Energy Planning, Environmental Education and Renewable Energy Sources
,”
4th WSEAS International Conference on Renewable Energy Sources
, Sousse, Tunisia, May 3–6, pp.
101
108
.
2.
Mohandes
,
M.
,
Rehman
,
S.
, and
Halawani
,
T. O.
,
1998
, “
Estimation of Global Solar Radiation Using Artificial Neural Networks
,”
Renewable Energy
,
14
, pp.
179
184
.10.1016/S0960-1481(98)00065-2
3.
Kassem
,
A. S.
,
Aboukarima
,
A. M.
, and
El Ashmawy
,
N. M.
,
2009
, “
Development of Neural Network Model to Estimate Hourly Total and Diffuse Solar Radiation on Horizontal Surface at Alexandria City (Egypt)
,”
J. Appl. Sci. Res.
,
5
(
11
), pp.
2006
2015
, available from http://aensiweb.com/jasr/jasr/2009/2006-2015.pdf
4.
Bulut
,
H.
,
Büyükalaca
,
O.
, and
Yılmaz
,
A.
,
2009
, “
Generation of Typical Solar Radiation Year for Mediterranean Region of Turkey
,”
Int. J. Green Energy
,
6
(
2
), pp.
173
183
.10.1080/15435070902784970
5.
Almorox
,
J.
,
Benito
,
M.
, and
Hontoria
,
C.
,
2008
, “
Estimation of Global Solar Radiation in Venezuela
,”
Interciencia
,
33
(
4
), pp.
280
283
, available from http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S0378-18442008000400009&lng=es&nrm=iso
6.
Falayi
,
E. O.
,
Adepitan
,
J. O.
, and
Rabiu
,
A. B.
,
2008
, “
Empirical Models for the Correlation of Global Solar Radiation With Meteorological Data for Iseyin, Nigeria
,”
Int. J. Phys. Sci.
,
3
(
9
), pp.
210
216
, http://www.academicjournals.org/journal/IJPS/article-abstract/2C4539B14842
7.
Fortin
,
J.
,
Anctil
,
F.
,
Parent
,
L.
, and
Bolinder
,
M.
,
2008
, “
Comparison of Empirical Daily Surface Incoming Solar Radiation Models
,”
Agric. Forest Meteorol.
,
148
, pp.
1332
1340
.10.1016/j.agrformet.2008.03.012
8.
Akinoglu
,
G.
, and
Ecevit
,
A.
,
1990
, “
A Further Comparison and Discussion of Sunshine Based Models to Estimate Global Solar Radiation
,”
Energy
,
15
, pp.
865
872
.10.1016/0360-5442(90)90068-D
9.
Samuel
,
T.
,
1991
, “
Estimation of Solar Radiation for Sri Lanka
,”
Sol. Energy
,
47
, pp.
333
337
.10.1016/0038-092X(91)90026-S
10.
Ampratwum
,
B.
, and
Dorvlo
,
A. S. S.
,
1999
, “
Estimation of Solar Radiation From the Number of Sunshine Hours
,”
Appl. Energy
,
63
, pp.
161
167
.10.1016/S0306-2619(99)00025-2
11.
Podestá
,
G.
,
Núñez
,
L.
,
Villanueva
,
C.
, and
Skanski
,
M.
,
2004
, “
Estimating Daily Solar Radiation in the Argentine Pampas
,”
Agric. Forest Meteorol.
,
123
, pp.
41
53
.10.1016/j.agrformet.2003.11.002
12.
Angström
,
A.
,
1924
, “
Solar and Terrestrial Radiation
,”
Q. J. R. Meteorol. Soc.
,
50
(
210
), pp.
121
125
.10.1002/qj.49705021008
13.
Dorvlo
,
A. S. S.
,
Jervase
,
J. A.
, and
Al-Lawati
,
A.
,
2002
, “
Solar Radiation Estimation Using Artificial Neural Networks
,”
Appl. Energy
,
71
, pp.
307
319
.10.1016/S0306-2619(02)00016-8
14.
Hontoria
,
L.
,
Riesco
,
J.
,
Zufiria
,
P.
, and
Aguilera
,
J.
,
1999
, “
Improved Generation of Hourly Solar Radiation Artificial Series Using Neural Networks
,” Fifth International Conference on Engineering Applications of Neural Networks (EANN'99), Warsaw, Poland, September 13–15, pp.
87
92
.
15.
Hontoria
,
L.
,
Aguilera
,
J.
, and
Zufiria
,
P.
,
2002
, “
Generation of Hourly Irradiation Synthetic Series Using the Neural Network Multilayer Perceptron
,”
Sol. Energy
,
72
, pp.
441
446
.10.1016/S0038-092X(02)00010-5
16.
Krishnaiah
,
T.
,
Srinivasa Rao
,
S.
,
Madhumurthy
,
K.
, and
Reddy
,
K. S.
,
2007
, “
A Neural Network Approach for Modelling Global Solar Radiation
,”
Appl. Sci. Res.
,
3
(
10
), pp.
1105
1111
, available from http://www.aensiweb.com/jasr/jasr/2007/1105-1111.pdf
17.
Elizondo
,
D.
,
Hoogenboom
,
G.
, and
McClendon
,
R. W.
,
1994
, “
Development of a Neural Network Model to Predict Daily Solar Radiation
,”
Agric. Forest Meteorol.
,
71
, pp.
115
132
.10.1016/0168-1923(94)90103-1
18.
Tymvios
,
F.
,
Michaelides
,
S.
, and
Skouteli
,
C.
,
2008
, “
Estimation of Surface Solar Radiation With Artificial Neural Networks
,”
Modeling Solar Radiation at the Earth Surface
,
Viorel Badescu
, ed.,
Springer
,
Berlin
, pp.
221
256
.
19.
Lam
,
J. C.
,
Kevin
,
K. W.
, and
Yang
,
L.
,
2008
, “
Solar Radiation Modelling Using ANNs for Different Climates in China
,”
Energy Convers. Manage.
,
49
, pp.
1080
1090
.10.1016/j.enconman.2007.09.021
20.
Mubiru
,
J.
,
2008
, “
Predicting Total Solar Irradiation Values Using Artificial Neural Networks
,”
Renewable Energy
,
33
(
10
), pp.
2329
2332
.10.1016/j.renene.2008.01.009
21.
Rehman
,
S.
, and
Mohandes
,
M.
,
2008
, “
Artificial Neural Network Estimation of Global Solar Radiation Using Air Temperature and Relative Humidity
,”
Energy Policy
,
36
, pp.
571
576
.10.1016/j.enpol.2007.09.033
22.
Behrang
,
M. A.
,
Assareh
,
E.
,
Ghanbarzadeh
,
A.
, and
Noghrehabadi
,
A. R.
,
2010
, “
The Potential of Different Artificial Neural Network (ANN) Techniques in Daily Global Solar Radiation Modeling Based on Meteorological Data
,”
Sol. Energy
,
84
, pp.
1468
1480
.10.1016/j.solener.2010.05.009
23.
Mohandes
,
M.
,
Balghonaim
,
A.
,
Kassas
,
M.
,
Rehman
,
S.
, and
Halawani
T. O.
,
2000
, “
Use of Radial Basis Functions for Estimating Monthly Mean Daily Solar Radiation
,”
Sol. Energy
,
68
(
2
), pp.
161
168
.10.1016/S0038-092X(99)00071-7
24.
Mubiru
,
J.
, and
Banda
,
E. J. K. B.
,
2008
, “
Estimation of Monthly Average Daily Global Solar Irradiation Using Artificial Neural Networks
,”
Sol. Energy
,
82
, pp.
181
187
.10.1016/j.solener.2007.06.003
25.
Kalogirou
,
S.
,
Michaelides
,
S.
, and
Tymvios
,
F.
,
2002
, “
Prediction of Maximum Solar Radiation Using Artificial Neural Networks
,”
World Renewable Energy Congress VII
, Cologne, Germany, June 28-July 5.
26.
Sozen
,
A.
,
Arcaklioglu
,
E.
,
Ozalp
,
M.
, and
Kanit
,
E. G.
,
2005
, “
Forecasting Based On Neural Network Approach of Solar Potential in Turkey
,”
Renewable Energy
,
30
(
7
), pp.
1075
1090
.10.1016/j.renene.2004.09.020
27.
Sozen
,
A.
,
Arcaklioglu
,
E.
,
Ozalp
,
M.
, and
Kanit
,
E. G.
,
2005
, “
Solar-Energy Potential in Turkey
,”
Appl. Energy
,
80
, pp.
367
381
.10.1016/j.apenergy.2004.06.001
28.
Sozen
,
A.
,
Arcaklioglu
,
E.
,
Ozalp
,
M.
, and
Kanit
,
E. G.
,
2004
, “
Use of Artificial Neural-Networks for Mapping the Solar Potential in Turkey
,”
Appl. Energy
,
77
, pp.
273
286
.10.1016/S0306-2619(03)00137-5
29.
Haykin
,
S.
,
2009
,
Neural Networks and Learning Machines
,
3rd ed.
,
Pearson Education, Inc.
,
NJ
.
30.
Yang
,
J.
,
Rivard
,
H.
, and
Zmeureanu
,
R.
,
2005
, “
Building Energy Prediction With Adaptive Artificial Neural Networks
,”
Ninth International IBPSA Conference
, Montréal, Canada, August 15–18.
31.
Chantasut
,
N.
,
Charoenjit
,
C.
, and
Tanprasert
,
C.
,
2004
, “
Predictive Mining of Rainfall Predictions Using Artificial Neural Networks for Chao Phraya River
,”
4th International Conference of the Asian Federation of Information Technology in Agriculture and the 2nd World Congress on Computers in Agriculture and Natural Resources
, Bangkok, Thailand, August 9–12.
32.
Al-Alawi
,
S. M.
, and
Al-Hinai
,
A.
,
1998
, “
An ANN-Based Approach for Predicting Global Solar Radiation in Locations With No Measurements
,”
Renewable Energy
,
14
(
1–4
), pp.
199
204
.10.1016/S0960-1481(98)00068-8
33.
Jayawardena
,
A. W.
,
Achela
,
D.
, and
Fernando
,
K.
,
1998
, “
Use of Radial Basis Function Type Artificial Neural Networks for Runoff Simulation
,”
Comput. Aided Civ. Infrastruct. Eng.
,
13
, pp.
91
99
.10.1111/0885-9507.00089
34.
MathWorks, 2013, “Neural Network Toolbox,” MathWorks Inc., Natick, MA, http://www.mathworks.com/help/toolbox/nnet/newrb.html
35.
Assi
,
A.
,
Al-Shamisi
,
M.
, and
Hejase
,
H.
,
2011
, “
Prediction of Global Solar Radiation in Abu Dhabi City—UAE
,”
26th European Photovoltaic Solar Energy Conference and Exhibition
, Hamburg, Germany, September 5–9, pp.
4328
4333
.
You do not currently have access to this content.