To attain an ongoing electricity economy, developing novel widespread electricity supply systems based on diverse energy resources are critically important. Several photovoltaic (PV) technologies exist, which cause various pathways to produce electricity from solar energy. This paper evaluates the competition between three influential solar technologies based on photovoltaic technique to find the optimal pathways for satisfying the electricity demand: (1) multicrystalline silicon; (2) copper, indium, gallium, and selenium (CIGS); and (3) multijunction. Besides the technical factors, there are other effective parameters such as cost, operability, feasibility, and capacity that should be considered when assessing the different pathways as optimal and viable long-term alternatives. To aid this decision-making process, a generic optimization-based model was developed for the long-range energy planning and design of future electricity supply system from solar energy. By applying dynamic programming techniques, the model is capable of identifying the optimal investment strategies and integrated supply system configurations from the many alternatives. The features and capabilities of the model were shown through application to Iran as a case study.

References

References
1.
Lesourd
,
J. B.
,
2001
, “
Solar Photovoltaic Systems: The Economics of a Renewable Energy Resource
,”
Environ. Modell. Software
,
16
, pp.
147
156
.10.1016/S1364-8152(00)00078-5
2.
Turney
,
D.
, and
Fthenakis
,
V.
,
2011
, “
Environmental Impacts From the Installation and Operation of Large-Scale Solar Power Plants
,”
Renewable Sustainable Energy Rev.
,
15
, pp.
3261
3270
.10.1016/j.rser.2011.04.023
3.
Tsoutsos
,
T.
,
Frantzeskaki
,
N.
, and
Gekas
,
V.
,
2005
, “
Environmental Impacts From the Solar Energy Technologies
,”
Energy Policy
,
33
, pp.
289
296
.10.1016/S0301-4215(03)00241-6
4.
Kaygusuz
,
K.
,
2009
, “
Environmental Impacts of the Solar Energy Systems
,”
Energy Sources, Part A
,
31
, pp.
1376
1386
.10.1080/15567030802089664
5.
Gunerhan
,
H.
,
Hepbasli
,
A.
, and
Giresunlu
,
U.
,
2009
, “
Environmental Impacts From the Solar Energy Systems
,”
Energy Sources, Part A
,
31
, pp.
131
138
.10.1080/15567030701512733
6.
Parida
,
P.
,
Iniyan
,
S.
, and
Goic
,
R.
,
2011
, “
A Review of Solar Photovoltaic Technologies
,”
Renewable Sustainable Energy Rev.
,
15
, pp.
1625
1636
.10.1016/j.rser.2010.11.032
7.
Makrides
,
G.
,
Zinsser
,
B.
,
Norton
,
M.
,
Georghiou
,
G. E.
,
Schubert
,
M.
, and
Werner
,
J. H.
,
2010
, “
Potential of Photovoltaic Systems in Countries With High Solar Irradiation
,”
Renewable Sustainable Energy Rev.
,
14
, pp.
754
762
.10.1016/j.rser.2009.07.021
8.
Saboohi
,
Y.
,
2002
, “
Energy System Model (ESM)
,” Technical Report, Sharif Energy Research Institute (SERI), Tehran, Iran.
9.
Liu
,
B. Y. H.
, and
Jordan
,
R. C.
,
1963
, “
The Long Term Average Performance of Flat Plate Solar Energy Collectors
,”
Sol. Energy
,
7
, pp.
53
70
.10.1016/0038-092X(63)90006-9
10.
Garg
,
H. P.
,
1982
,
Treatise on Solar Energy
,
Wiley
,
New York.
11.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2006
,
Solar Engineering of Thermal Processes
,
Wiley
,
New York
.
12.
Cooper
,
P. I.
,
1969
, “
The Absorption of Solar Radiation on Solar Stills
,”
Sol. Energy
,
12
(
3
), pp.
333
346
.10.1016/0038-092X(69)90047-4
13.
Boyd
,
M. T.
,
Klein
,
S. A.
,
Reindl
,
D. T.
, and
Dougherty
,
B. P.
,
2011
, “
Evaluation and Validation of Equivalent Circuit Photovoltaic Solar Cell Performance Models
,”
ASME J. Sol. Energy Eng.
,
133
, p.
021005
.10.1115/1.4003584
14.
Kean Yap
,
W.
, and
Karri
,
V.
,
2012
, “
Comparative Study in Predicting the Global Solar Radiation for Darwin, Australia
,”
ASME J. Sol. Energy Eng.
,
134
, p.
034501
.10.1115/1.4006574
15.
Sayedin
,
F.
,
2010
, “
Modeling Solar Hydrogen Fuel Cell System for Residential Application
,” M.Sc. thesis, Department of Energy Engineering, Sharif University of Technology, Tehran, Iran.
16.
Salvatipour
,
H. S.
,
Abdolzadeh
,
M.
,
Beheshti
,
H. K.
, and
Rahnama
,
M.
,
2011
, “
Solar Energy Enhancement of a Solar Collector by an Optimum Slope Angle in Isfahan, Central Region of Iran
,”
Energy Sources, Part A
,
33
(
17
), pp.
1625
1635
.10.1080/15567036.2010.521799
17.
Price
,
S.
, and
Margolis
,
R.
,
2010
, “
Solar Technologies Market Report
,” Energy Efficiency and Renewable Energy (NREL), Report No. DOE/GO-102010-2867.
18.
Rezaei
,
K.
,
Rajabi
,
G. H.
, and
Samadian
,
M.
,
2012
, “
Electric Power Industry Statistics in Iran
,” Internal Report, Tavanir Org, Tehran, Iran.
19.
Sabziparvar
,
A. A.
,
2008
, “
A Simple Formula for Estimating Global Solar Radiation in Central Arid Deserts of Iran
,”
Renewable Energy
,
33
, pp.
1002
1010
.10.1016/j.renene.2007.06.015
20.
TimeandDate.com, 1995, “Final Local Time in Cities Worldwide,” Accessed on Jan. 14,
2012
, http://www.timeanddate.com/worldclock/city.html
21.
McConnell
,
R.
, and
Symko-Davies
,
M.
,
2006
, “
Multijunction Photovoltaic Technologies for High-Performance Concentrators
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/CP-520-39791.
You do not currently have access to this content.