A two-dimensional numerical model is developed to simulate the transient response of a heat pipe-assisted latent heat thermal energy storage (LHTES) unit integrated with dish-Stirling solar power generation systems. The unit consists of a container which houses a phase change material (PCM) and two sets of interlaced input and output heat pipes (HPs) embedded in the PCM. The LHTES unit is exposed to time-varying concentrated solar irradiance. A three-stage operating scenario is investigated that includes: (i) charging only, (ii) simultaneous charging and discharging, and (iii) discharging only. In general, it was found that the PCM damps the temporal variations of the input solar irradiance, and provides relatively smooth thermal power to the engine over a time period that can extend to after-sunset hours. Heat pipe spacing was identified as a key parameter to control the dynamic response of the unit. The system with the greatest (smallest) heat pipe spacing was found to have the greatest (smallest) temperature drops across the LHTES, as well as the maximum (minimum) amount of PCM melting and solidification. Exergy analyses were also performed, and it was found that the exergy efficiencies of all the systems considered were greater than 97%, with the maximum exergy efficiency associated with the system having the minimum heat pipe spacing.

References

References
1.
Andraka
,
C. E.
,
Rawlinson
,
K. S.
, and
Siegel
,
N. P.
,
2012
, “
Technical Feasibility of Storage on Large Dish Stirling Systems
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2012-8352.
2.
Morisson
,
V.
,
Rady
,
M.
,
Palomo
,
E.
, and
Arquis
,
E.
,
2008
, “
Thermal Energy Storage Systems for Electricity Production Using Solar Energy Direct Steam Generation Technology
,”
Chem. Eng. Process.
,
47
, pp.
499
507
.10.1016/j.cep.2007.01.025
3.
Siahpush
,
A.
,
O'Brien
,
J.
, and
Crepeau
,
J.
,
2008
, “
Phase Change Heat Transfer Enhancement Using Copper Porous Foam
,”
ASME J. Heat Transfer
,
130
(
8
), p.
082301
.10.1115/1.2928010
4.
Fukai
,
J.
,
Kanou
,
M.
,
Kodama
,
Y.
, and
Miyatake
,
O.
,
2000
, “
Thermal Conductivity Enhancement of Energy Storage Media Using Carbon Fibers
,”
Energy Convers. Manage.
,
41
(
14
), pp.
1543
1556
.10.1016/S0196-8904(99)00166-1
5.
Fukai
,
J.
,
Hamada
,
Y.
,
Morozumi
,
Y.
, and
Miyatake
,
O.
,
2002
, “
Effect of Carbon-Fiber Brushes on Conductive Heat Transfer in Phase Change Materials
,”
Int. J. Heat Mass Transfer
,
45
(
24
), pp.
4781
4792
.10.1016/S0017-9310(02)00179-5
6.
Gharebaghi
,
M.
, and
Sezai
,
I.
,
2008
, “
Enhancement of Heat Transfer in Latent Heat Storage Modules With Internal Fins
,”
Numer. Heat Transfer, Part A
,
53
, pp.
749
765
.10.1080/10407780701715786
7.
Sharifi
,
N.
,
Bergman
,
T. L.
, and
Faghri
,
A.
,
2011
, “
Enhancement of PCM Melting in Enclosures With Horizontally-Finned Internal Surfaces
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4182
4192
.10.1016/j.ijheatmasstransfer.2011.05.027
8.
Shabgard
,
H.
,
Bergman
,
T. L.
, and
Faghri
,
A.
,
2013
, “
Exergy Analysis of Latent Heat Thermal Energy Storage for Solar Power Generation Accounting for Constraints Imposed by Long-Term Operation and the Solar Day
,”
Energy
,
60
, pp.
474
484
.10.1016/j.energy.2013.08.020
9.
Faghri
,
A.
,
1995
,
Heat Pipe Science and Technology
,
Taylor & Francis
,
New York
.
10.
Narayanan
,
R.
,
Zimmerman
,
W. F.
, and
Poon
,
P. T. Y.
,
1981
, “
Experimental Simulation of Latent Heat Thermal Energy Storage and Heat Pipe Thermal Transport for Dish Concentrator Solar Receiver
,”
ASME Winter Annual Meeting
,
Washington, DC
, November 15–20.
11.
Faghri
,
A.
,
1990
, “
Thermal Energy Storage Heat Exchangers
,” U.S. Patent No. 4976308.
12.
Faghri
,
A.
,
1991
, “
Micro Heat Pipe Energy Storage Systems
,” U.S. Patent No. 5000252.
13.
Liu
,
Z.
,
Wang
,
Z.
, and
Ma
,
C.
,
2006
, “
An Experimental Study on Heat Transfer Characteristics of Heat Pipe Heat Exchanger With Latent Heat Storage. Part I: Charging Only and Discharging Only Modes
,”
Energy Convers. Manage.
,
47
(
7–8
), pp.
944
966
.10.1016/j.enconman.2005.06.004
14.
Tardy
,
F.
, and
Sami
,
S. M.
,
2009
, “
Thermal Analysis of Heat Pipes During Thermal Storage
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
329
333
.10.1016/j.applthermaleng.2008.02.037
15.
Shabgard
,
H.
,
Bergman
,
T. L.
,
Sharifi
,
N.
, and
Faghri
,
A.
,
2010
, “
High Temperature Latent Heat Thermal Energy Storage Using Heat Pipes
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
2979
2988
.10.1016/j.ijheatmasstransfer.2010.03.035
16.
Robak
,
C. W.
,
Bergman
,
T. L.
, and
Faghri
,
A.
,
2011
, “
Enhancement of Latent Heat Energy Storage Using Embedded Heat Pipes
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3476
3484
.10.1016/j.ijheatmasstransfer.2011.03.038
17.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2011
, “
Analysis and Optimization of a Latent Thermal Energy Storage System With Embedded Heat Pipes
,”
Int. J. Heat Mass Transfer
,
54
(
21–22
), pp.
4596
4610
.10.1016/j.ijheatmasstransfer.2011.06.018
18.
Liu
,
X.
,
Fang
,
G.
, and
Chen
,
Z.
,
2011
, “
Dynamic Charging Characteristics Modeling of Heat Storage Device With Heat Pipe
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2902
2908
.10.1016/j.applthermaleng.2011.05.018
19.
Shabgard
,
H.
,
Robak
,
C. W.
,
Bergman
,
T. L.
, and
Faghri
,
A.
,
2012
, “
Heat Transfer and Exergy Analysis of Cascaded Latent Heat Storage With Gravity-Assisted Heat Pipes for Concentrating Solar Power Applications
,”
Sol. Energy
,
86
(
3
), pp.
816
830
.10.1016/j.solener.2011.12.008
20.
Sharifi
,
N.
,
Wang
,
S.
,
Bergman
,
T. L.
, and
Faghri
,
A.
,
2012
, “
Heat Pipe-Assisted Melting of a Phase Change Material
,”
Int. J. Heat Mass Transfer
,
55
(
13
), pp.
3458
3469
.10.1016/j.ijheatmasstransfer.2012.03.023
21.
Kim
,
T. Y.
,
Hyun
,
B. S.
,
Lee
,
J. J.
, and
Rhee
,
J.
,
2013
, “
Numerical Study of the Spacecraft Thermal Control Hardware Combining Solid–Liquid Phase Change Material and a Heat Pipe
,”
Aerosp. Sci. Technol.
,
27
(
1
), pp.
10
16
.10.1016/j.ast.2012.05.007
22.
Nithyanandam
,
K.
,
2013
, “
Computational Modeling of Dynamic Response of a Latent Thermal Energy Storage System With Embedded Heat Pipes
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
011010
.10.1115/1.4024745
23.
Wang
,
S.
,
Faghri
,
A.
, and
Bergman
,
T. L.
,
2010
, “
A Comprehensive Numerical Model for Melting With Natural Convection
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1986
2000
.10.1016/j.ijheatmasstransfer.2009.12.057
24.
Cao
,
Y.
, and
Faghri
,
A.
,
1990
, “
Transient Two-Dimensional Compressible Analysis for High-Temperature Heat Pipes With Pulsed Heat Input
,”
Numer. Heat Transfer, Part A
,
18
(
4
), pp.
483
502
.10.1080/10407789008944804
25.
Faghri
,
A.
, and
Zhang
,
Y.
,
2006
,
Transport Phenomena in Multiphase Systems
,
Academic/Elsevier
,
New York
.
26.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
, Springer, Berlin, Germany.
27.
Andraka
,
C. E.
,
Rawlinson
,
K. S.
,
Moss
,
T. A.
,
Adkins
,
D. R.
,
Moreno
,
J. B.
,
Cordeiro
,
P. G.
,
Johansson
,
S.
, and
Gallup
,
D. R.
,
1996
, “
Solar Heat Pipe Testing of the Stirling Thermal Motors 4-120 Stirling Engine
,” Proceedings of the 31st Intersociety Energy Conversion Engineering Conference (
IECEC 96
), Washington, DC, August 11–16, pp. 1295–1300.10.1109/IECEC.1996.553903
29.
Wu
,
S. Y.
,
Xiao
,
L.
,
Cao
,
Y.
, and
Li
,
Y. R.
,
2010
, “
A Parabolic Dish/AMTEC Solar Thermal Power System and Its Performance Evaluation
,”
Appl. Energy
,
87
(
2
), pp.
452
462
.10.1016/j.apenergy.2009.08.041
30.
Zalba
,
B.
,
Marin
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
.10.1016/S1359-4311(02)00192-8
31.
Brown
,
J. M.
,
1999
, “
The NaCl Pressure Standard
,”
J. Appl. Phys.
,
86
(
10
), pp.
5801
5808
.10.1063/1.371596
32.
Haynes
,
W. M.
,
Lide
,
D. R.
,
Thomas
J.
and
Bruno
,
T. J.
,
2012
,
CRC Handbook of Chemistry and Physics 2012-2013
,
Taylor and Francis
,
Boca Raton, FL
.
33.
Sykes
,
C.
, and
Wilkinson
,
H.
,
1938
, “
The Specific Heat of Nickel From 100 °C to 600 °C
,”
Proc. Phys. Soc. Jpn.
,
50
, pp.
834
851
.10.1088/0959-5309/50/5/319
34.
Jany
,
P.
, and
Bejan
,
A.
,
1988
, “
Scaling Theory of Melting With Natural Convection in an Enclosure
,”
Int. J. Heat Mass Transfer
,
31
(
6
), pp.
1221
1235
.10.1016/0017-9310(88)90065-8
You do not currently have access to this content.