In this research, n-dodecylthiol was added to P3HT/PC70BM polymer solar cells (PSCs) to improve the crystallinity of P3HT and enhance the phase separation of P3HT/PC70BM. Crystallinity of P3HT:PC70BM doped with 0–5% by volume of n-dodecylthiol was measured using X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques. Both methods showed improvement in crystallinity, which resulted in improving the power conversion efficiency (PCE) of polymer solar cells by 33%. In addition, annealing at 150 °C for 30 min showed further improvement in crystallinity with n-dodecylthiol concentration up to 2%. The highest power conversion efficiency of 3.21% was achieved with polymer crystallites size L of 11.2 nm, after annealing at 150 °C for 30 min under a vacuum atmosphere. The smaller crystallite size suggests a shorter path of the charge carriers between P3HT backbones, which could be beneficial to getting a higher short circuit current in the devices made with the additive. Kinetics study of P3HT:PC70BM crystallinity using Avrami model showed a faster crystallization rate (1/t0.5) at higher temperatures.

References

References
1.
Cai
,
W.
,
Gong
,
X.
, and
Cao
,
Y.
,
2010
, “
Polymer Solar Cells: Recent Development and Possible Routes for Improvement in the Performance
,”
Sol. Energy Mater. Sol. Cells
,
94
, pp.
114
127
.10.1016/j.solmat.2009.10.005
2.
Lira-Cantu
,
M.
,
Chafiq
,
A.
,
Faissat
,
J.
,
Gonzalez-Valls
,
I.
, and
Yu
,
Y.
,
2011
, “
Oxide/Polymer Interfaces for Hybrid and Organic Solar Cells: Anatase vs. RutileTiO2
,”
Sol. Energy Mater. Sol. Cells
,
95
, pp.
1362
1374
.10.1016/j.solmat.2010.12.028
3.
Larsen-Olsen
,
T. T.
,
Andersen
,
T. R.
,
Andreasen
,
B.
,
Böttiger
,
A. P. L.
,
Bundgaard
,
E.
,
Norrman
,
K.
,
Andreasen
,
J. W.
,
Jorgensen
,
M.
, and
Krebs
,
F. C.
,
2012
, “
Roll-to-Roll Processed Polymer Tandem Solar Cells Partially Processed From Water
,”
Sol. Energy Mater. Sol. Cells
,
97
, pp.
43
49
.10.1016/j.solmat.2011.08.025
4.
Manceau
,
M.
,
Angmo
,
D.
,
Jorgensen
,
M.
, and
Krebs
,
F. C.
,
2011
, “
ITO-Free Flexible Polymer Solar Cells: From Small Model Devices to Roll-to-Roll Processed Large Modules
,”
Org. Electron.
,
12
, pp.
566
574
.10.1016/j.orgel.2011.01.009
5.
Krebs
,
F. C.
,
2009
, “
All Solution Roll-to-Roll Processed Polymer Solar Cells Free From Indium-Tin-Oxide and Vacuum Coating Steps
,”
Org. Electron.
,
10
, pp.
761
768
.10.1016/j.orgel.2009.03.009
6.
Ma
,
W.
,
Yang
,
C.
,
Gong
,
X.
,
Lee
,
K.
, and
Heeger
,
A. J.
,
2005
, “
Thermally Stable
,
Efficient Polymer Solar Cells With Nanoscale Control of the Interpenetrating Network Morphology
,”
Adv. Funct. Mater.
,
15
, pp.
1617
1622
.10.1002/adfm.200500211
7.
Choulis
,
S. A.
,
Kim
,
Y.
,
Nelson,
J.
, and
Bradley
,
D. D. C.
,
Giles
,
M.
,
Shkunov
,
M.
, and
McCulloch
,
I.
,
2004
, “
High Ambipolar and Balanced Carrier Mobility in Regioregular Poly(3-Hexylthiophene)
,”
Appl. Phys. Lett.
,
85
, pp.
3890
3892
.10.1063/1.1805175
8.
Schafferhans
,
J.
,
Baumann
,
A.
,
Wagenpfahl
,
A.
,
Deibel
,
C.
, and
Dyakonov
,
V.
,
2010
, “
Oxygen Doping of P3HT:PCBM Blends: Influence on Trap States
,
Charge Carrier Mobility and Solar Cell Performance
,”
Org. Electron.
,
11
, pp.
1693
1700
.10.1016/j.orgel.2010.07.016
9.
Dang
,
M. T.
,
Wantz
,
G.
,
Bejbouji
,
H.
,
Urien
,
M.
,
Dautel
,
O. J.
,
Vignau
,
L.
, and
Hirsch
,
L.
,
2011
, “
Polymeric Solar Cells Based on P3HT:PCBM: Role of the Casting Solvent
,”
Sol. Energy Mater. Sol. Cells
,
95
, pp.
3408
3418
.10.1016/j.solmat.2011.07.039
10.
Baek
,
W.-H.
,
Yang
,
H.
,
Yoon
,
T.-S.
,
Kang
,
C. J.
,
Lee
,
H. H.
, and
Kim
,
Y.-S.
,
2009
, “
Effect of P3HT:PCBM Concentration in Solvent on Performances of Organic Solar Cells
,”
Sol. Energy Mater. Sol. Cells
,
93
, pp.
1263
1267
.10.1016/j.solmat.2009.01.019
11.
Zen
,
A.
,
Saphiannikova
,
M.
,
Neher
,
D.
,
Grenzer
,
J.
,
Grigorian
,
S.
,
Pietsch
,
U.
,
Asawapirom
,
U.
,
Janietz
,
S.
,
Scherf
,
U.
,
Lieberwirth
,
I.
, and
Wegner
,
G.
,
2006
, “
Effect of Molecular Weight on the Structure and Crystallinity of Poly(3-Hexylthiophene)
,”
Macromolecules
,
39
, pp.
2162
2171
.10.1021/ma0521349
12.
Peters
,
C. H.
,
Sachs-Quintana
,
I. T.
,
Kastrop
,
J. P.
,
Beaupre
,
S.
,
Leclerc
,
M.
, and
McGehee
,
M. D.
,
2011
, “
High Efficiency Polymer Solar Cells With Long Operating Lifetimes
,”
Adv. Energy Mater.
,
1
, pp.
491
494
.10.1002/aenm.201100138
13.
Sun
,
Y.
,
Welch
,
G. C.
,
Leong
,
W. L.
,
Takacs
,
C. J.
,
Bazan
,
G. C.
, and
Heeger
,
A. J.
,
2012
, “
Solution-Processed Small-Molecule Solar Cells With 6.7% Efficiency
,”
Nature Mater.
,
11
, pp.
44
48
.10.1038/nmat3160
14.
Reisdorffer
,
F.
,
Haas
,
O.
,
Le Rendu
,
P.
, and
Nguyen
,
T. P.
,
2012
, “
Co-Solvent Effects on the Morphology of P3HT:PCBM Thin Films
,”
Synthetic Met.
,
161
, pp.
2544
2548
.10.1016/j.synthmet.2011.08.005
15.
Konkin
,
A.
,
Bounioux
,
C.
,
Ritter
,
U.
,
Scharff
,
P.
,
Katz
,
E. A.
,
Aganov
,
A.
,
Gobsch
,
G.
,
Hoppec
,
H.
,
Ecke
,
G.
, and
Roth
,
H.-K.
,
2011
, “
ESR and LESR X-Band Study of Morphology and Charge Carrier Interaction in Blended P3HT–SWCNT and P3HT–PCBM–SWCNT Solid Thin Films
,”
Synthetic Met.
,
161
, pp.
2241
2248
.10.1016/j.synthmet.2011.08.027
16.
Jin
,
S.-H.
,
Naidu
,
B. V. K.
,
Jeon
,
H.-S.
,
Park
,
S.-M.
,
Park
,
J.-S.
,
Kim
,
S. C.
,
Lee
,
J. W.
, and
Gal
,
Y.-S.
,
2007
, “
Optimization of Process Parameters for High-Efficiency Polymer Photovoltaic Devices Based on P3HT:PCBM System
,”
Sol. Energy Mater. Sol. Cells
,
91
, pp.
1187
1193
.10.1016/j.solmat.2007.04.001
17.
Jo
,
J.
,
Kim
,
S.-S.
,
Na
,
S.-I.
,
Yu
,
B.-K.
, and
Kim
,
D.-Y.
,
2009
, “
Time-Dependent Morphology Evolution by Annealing Processes on Polymer:Fullerene Blend Solar Cells
,”
Adv. Funct. Mater.
,
19
, pp.
866
874
.10.1002/adfm.200800968
18.
Kim
,
H.
,
So
,
W.-W.
, and
Moon
,
S.-J.
,
2006
, “
Effect of Thermal Annealing on the Performance of P3HT/PCBM Polymer Photovoltaic Cells
,”
J. Korean Phys. Soc.
,
48
, pp.
441
445
.
19.
Karagiannidis
,
P. G.
,
Kassavetis
,
S.
,
Pitsalidis
,
C.
, and
Logothetidis
,
S.
,
2011
, “
Thermal Annealing Effect on the Nanomechanical Properties and Structure of P3HT:PCBM Thin films
,”
Thin Solid Films
,
519
, pp.
4105
4109
.10.1016/j.tsf.2011.01.196
20.
Miller
,
S.
,
Fanchini
,
G.
,
Lin
,
Y.-Y.
,
Li
,
C.
,
Chen
,
C.-W.
,
Su
,
W.-F.
, and
Chhowalla
,
M.
,
2008
, “
Investigation of Nanoscale Morphological Changes in Organic Photovoltaics During Solvent Vapor Annealing
,”
J. Mater. Chem.
,
18
, pp.
306
312
.10.1039/b713926h
21.
Zhao
,
Y.
,
Guo
,
X.
,
Xie
,
Z.
,
Qu
,
Y.
,
Geng
,
Y.
, and
Wang
,
L.
,
2009
, “
Solvent Vapor-Induced Self Assembly and Its Influence on Optoelectronic Conversion of Poly(3-Hexylthiophene): Methanofullerene Bulk Heterojunction Photovoltaic Cells
,”
J. Appl. Polym. Sci.
,
111
, pp.
1799
1804
.10.1002/app.29197
22.
Berson
,
S.
,
De
Bettignies
,
R.
,
Bailly
,
S.
, and
Guillerez
,
S.
,
2007
, “Poly(3-hexylthiophene) Fibers for Photovoltaic Applications, ”
Adv. Funct. Mater.
,
17
, pp.
1377
–138410.1002/adfm.200600922
23.
Chang
,
Y. M.
, and
Wang
,
L.
,
2007
, “Efficient Poly(3-hexylthiophene)-Based Bulk Heterojunction Solar Cells Fabricated by an Annealing-Free Approach,”
J. Phys. Chem. C
,
112
, pp.
17716–17720
.10.1021/jp804909a
24.
Samitsu
,
S.
,
Shimomura
,
T.
,
Heike
,
S.
,
Hashizume
,
T.
, and
Ito
,
K.
,
2008
, “Effective Production of Poly(3-alkylthiophene) Nanofibers by Means of Whisker Method Using Anisole Solvent: Structural, Optical, and Electrical Properties,”
Macromolecules
,
41
,
pp. 8000–8010
.10.1021/ma801128v
25.
Moule
,
A. J.
, and
Meerholz
,
K.
,
2008
, “Controlling Morphology in Polymer—Fullerene Mixtures,”
Adv. Mater.
,
20
, pp.
240–245
.10.1002/adma.200701519
26.
Zhang
,
F. J.
,
Xu
,
X. W.
,
Tang
,
W. H.
,
Zhang
,
J.
,
Zhuo
,
Z. L.
,
Wang
,
J.
,
Wang
,
J.
,
Xu
,
Z.
,
Wang
,
Y. S.
,
2011
, “
Recent Development of the Inverted Configuration Organic Solar Cells
,”
Sol. Energy Mater. Sol. Cells
,
95
, pp.
1785
1799
.10.1016/j.solmat.2011.02.002
27.
He
,
Y. J.
,
Chen
,
H. Y.
,
Hou
,
J. H.
, and
Li
,
Y. F.
,
2010
, “
Indene-C60 Bisadduct: A New Acceptor for High-Performance Polymer Solar Cells
,”
J. Am. Chem. Soc.
,
132
, p.
5532
.10.1021/ja101780s
28.
Lenes
,
M.
,
Wetzelaer
,
G. J. A. H.
,
Kooistra
,
F. B.
,
Veenstra
,
S. C.
,
Hummelen
,
J. C.
,
Blom
,
P. W. M.
,
2008
, “
Fullerene Bisadducts for Enhanced Open-Circuit Voltages and Efficiencies in Polymer Solar Cells
,”
Adv. Mater.
,
20
, p.
2116
.10.1002/adma.200702438
29.
Yuan
,
Y.
,
Reece
,
T. J.
,
Sharma
,
P.
,
Poddar
,
S
,
Ducharme
,
S.
,
Gruverman.
A.
,
Yang
,
Y.
, and
Huang
,
J.
,
2011
, “
Efficiency Enhancement in Organic Solar Cells With Ferroelectric Polymers
,”
Nature Mater.
,
10
, pp.
296
302
.10.1038/nmat2951
30.
Boland
,
P.
,
Sunkavalli
,
S. S.
,
Chennuri
,
S.
,
Foe
,
K.
,
Abdel-Fattah
,
T.
, and
Namkoong
,
G.
,
2010
, “
Investigation of Structural
,
Optical
,
and Electrical Properties of Regioregular Poly(3-Hexylthiophene)/Fullerene Blend Nanocomposites for Organic Solar Cells
,”
Thin Solid Films
,
518
, pp.
1728
1731
.10.1016/j.tsf.2009.11.065
31.
Peet
,
J.
,
Soci
,
C.
,
Coffin
,
R. C.
,
Nguyen
,
T. Q.
,
Mikhailovsky
,
A.
,
Moses
,
D.
,
Bazan
,
G. C.
,
2008
, “Method for Increasing the Photoconductive Response in Conjugated Polymer/Fullerene Composites,”
Appl. Phys. Lett.
,
89
, p.
252105
.10.1063/1.2408661
32.
Pivrikas
,
A.
,
Stadler
,
P.
,
Neugebauer
,
H.
, and
Sariciftci
,
N. S.
,
2008
, “Substituting the Postproduction Treatment for Bulk-Heterojunction Solar Cells Using Chemical Additives,”
Org. Electron.
,
9
, pp.
775
–782.10.1016/j.orgel.2008.05.021
33.
Yao
,
Y.
,
Hou
,
J. H.
,
Xu
,
Z.
,
Li
,
G.
, and
Yang
,
Y.
,
2008
, “Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cells,”
Adv. Funct. Mater.
,
18
, pp.
1783–1789
.10.1002/adfm.200701459
34.
Lee
,
J. K.
,
Ma
,
W. L.
,
Brabec
,
C. J.
,
Yuen
,
J.
,
Moon
,
J. S.
,
Kim
,
J. Y.
,
Lee
,
K.
,
Bazan
,
G. C.
, and
Heeger
,
A. J.
,
2008
, “Processing Additives for Improved Efficiency From Bulk Heterojunction Solar Cells,”
J. Am. Chem. Soc.
,
130
, pp.
3619
–3623.10.1021/ja710079w
35.
Li
,
G.
,
Shrotriya
,
V.
,
Yao
,
Y.
,
Huang
,
J.
, and
Yang
,
Y
,
2007
, “
Manipulating Regioregular Poly(3-Hexylthiophene): [6,6]-Phenyl-C61-Butyric Acid Methyl Ester Blends—Route Towards High Efficiency Polymer Solar Cells
,”
J. Mater. Chem.
,
17
, pp.
3126
3140
.10.1039/b703075b
36.
Liu
,
J.
,
Shao
,
S.
,
Wang
,
H.
,
Zhao
,
K.
,
Xue
,
L.
,
Gao
,
X.
,
Xie
,
Z.
, and
Han
,
Y.
,
2010
, “
The Mechanisms for Introduction of n-Dodecylthiol to Modify the P3HT/PCBM Morphology
,”
Org. Electron.
,
11
, pp.
775
783
.10.1016/j.orgel.2010.01.017
37.
Erb
,
T.
,
Zhokhavets
,
U.
,
Gobsch
,
G.
,
Raleva
,
S.
,
Stuhn
,
B.
,
Schilinsky
,
P.
,
Waldauf
,
C.
, and
Brabec
,
C. J.
,
2005
, “Correlation Between Structural and Optical Properties of Composite Polymer/Fullerene Films for Organic Solar Cells,”
Adv. Funct. Mater.
,
15
, pp.
1193
–1196.10.1002/adfm.200400521
38.
Heo
,
S. W.
,
Song
,
K. W.
,
Choi
,
M. H.
,
Oh
,
H. S.
, and
Moon
,
D. K.
,
2013
, “
Influence of Alkanediol Series as Processing Additives in Photo-Active Layer on the Power Conversion Efficiency of Polymer Solar Cells
,”
Sol. Energy Mater. Sol. Cells
,
114
, pp.
82
88
.10.1016/j.solmat.2013.02.004
39.
Cullity
,
B. D.
,
2001
,
Elements of X Ray Diffraction
,
3rd ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
, p.
113
.
40.
Tsai
,
J.-H.
,
Lai
,
Y.-C.
,
Higashihara
,
T.
,
Lin
,
C.-J.
,
Ueda
,
M.
, and
Chen
,
W.-C.
,
2010
, “
Enhancement of P3HT/PCBM Photovoltaic Efficiency Using the Surfactant of Triblock Copolymer Containing Poly(3-Hexylthiophene) and Poly(4-Vinyltriphenylamine) Segments
,”
Macromolecules
,
43
, pp.
6085
6091
.10.1021/ma1011182
41.
Shimomura
,
M.
,
Kaga
,
M.
,
Nakayama
,
N.
, and
Miyauchi
,
S.
,
1995
, “
Thermal and Electrical Properties of Poly(3-Alkylthiophene)s Prepared by the Oxidative Polymerization
,”
Synthetic Met.
,
69
, pp.
313
314
.10.1016/0379-6779(94)02465-B
42.
Zhao
,
Y.
,
Yuan
,
G.
, and
Roche
,
P.
,
1995
, “
A Calorimetric Study of the Phase Transitions in Poly(3-Hexylthiophene)
,”
Polymer
,
36
, pp.
2211
2214
.10.1016/0032-3861(95)95298-F
43.
Van Krevelen
,
D. W.
,
1990
,
Properties of Polymers
,
3rd ed.
,
Elsevier Science Publishers
,
Amsterdam, Oxford, New York
.
44.
Avrami
,
M.
,
1939
, “Kinetics of Phase Change. I General Theory,”
J. Chem. Phys.
,
7
, pp.
1103
1112
.10.1063/1.1750380
45.
Mandelkern
,
L.
,
1964
,
Crystallization of Polymers
,
McGraw-Hill
,
New York
.
46.
Wunderlich
,
B.
,
1976
,
Crystal Nucleation, Growth, Annealing, Macromolecular Physics
, Vol.
2
,
Academic Press
,
New York
.
47.
Avrami
,
M.
,
1940
, “Kinetics of Phase Change. II Transformation—Time Relations for Random Distribution of Nuclei,”
J. Chem. Phys.
,
8
, pp.
212
224
.10.1063/1.1750631
48.
Avrami
,
M.
,
1941
, “Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III,”
J. Chem. Phys.
,
9
, pp.
177
184
.10.1063/1.1750872
49.
Szd
,
C.
,
1988
, “
Kinetics of Mesophase Transitions in Thermotropic Copolyesters. 1. Calorimetric Study
,”
Macromolecules
,
21
, p.
2475
.10.1021/ma00186a029
50.
Zou
,
P.
,
Tang
,
S.
,
Fu
,
Z.
, and
Xiong
,
H.
,
2009
, “
Isothermal and Non-Isothermal Crystallization Kinetics of Modified Rape Straw Flour/High-Density Polyethylene Composites
,”
Int. J. Therm. Sci.
,
48
, pp.
837
846
.
51.
Li
,
G.
,
Yao
,
Y.
,
Yang
,
H.
,
Shrotriya
,
V.
,
Yang
,
G.
, and
Yang
,
Y.
,
2007
, “Solvent Annealing” “Effect in Polymer Solar Cells Based on Poly(3-hexylthiophene) and Methanofullerenes,”
Adv. Funct. Mater.
,
17
, p.
1636
.10.1002/adfm.200600624
52.
Ayzner
,
A. L.
,
Wanger
,
D. D.
,
Tassone
,
C. J.
,
Tolbert
,
S. H.
, and
Schwartz
,
B. J.
,
2008
, “Room to Improve Conjugated Polymer-Based Solar Cells: Understanding How Thermal Annealing Affects the Fullerene Component of a Bulk Heterojunction Photovoltaic Device,”
J. Phys. Chem. C
,
112
, pp.
18711–18716.
.10.1021/jp8076497
53.
Campbell
,
A. R.
,
Hodgkiss
,
J. M.
,
Westenhoff
,
S.
,
Howard
,
I. A.
,
Marsh
,
R. A.
,
McNeill
,
C. R.
,
Friend
,
R. H.
, and
Greenham
,
N. C.
,
2008
, “Low-Temperature Control of Nanoscale Morphology for High Performance Polymer Photovoltaics,”
Nano Lett.
,
8
, pp.
3942–3947
.10.1021/nl802425r
54.
Watkins
,
P. K.
,
Walker
,
A. B.
, and
Verschoor
,
G. L. B.
,
2005
, “Dynamical Monte Carlo Modelling of Organic Solar Cells: The Dependence of Internal Quantum Efficiency on Morphology,”
Nano Lett.
,
5
, pp.
1814–1818
.10.1021/nl051098o
You do not currently have access to this content.