A Photovoltaic (PV) module consists of layers of different materials constrained together through an encapsulant polymer. During its lamination and operation, it experiences mechanical and thermal loads due to seasonal and daily temperature variations, which cause breakage of interconnects owing to fatigue. This is due to the fact that there is a coefficient of thermal expansion (CTE) mismatch because of the presence of unlike materials within the laminate. Therefore, thermomechanical stresses are induced in the module. The lifetime of today's PV module is expected to be 25 yr and this period corresponds to the guarantee of the manufacturer. Its high reliability will help it to reach grid parity. But, the problem is that it is not convenient to wait and assess its durability. In this work, material of each component of PV module is characterized and finite-element (FE) structural analysis is performed to find the initial condition of the components of the module after manufacture. It was found that the copper interconnects undergo plastic deformation just after the lamination process. A thermal model was numerically developed and sequentially coupled to the structural model. By using the meteorological data of Jeddah, Saudi Arabia, average life of PV module was estimated to be 26.5 yr.

References

References
1.
U.S. Energy Information Administration,
2011
, International Energy Outlook 2011, Report No. DOE/EIA-0484(2011), http://www.eia.doe.gov/oiaf/ieo/index.html
2.
Report to Congressional Requesters Prepared by the United States General Accounting Office,
2002
, Meeting Future Electricity Demand Will Increase Emissions of Some Harmful Substances, Report No. GAO-03-49.
3.
Lewis
,
N. S.
,
2007
, “
Toward Cost-Effective Solar Energy Use
,”
Science
,
315
(
5813
), pp.
798
801
.10.1126/science.1137014
4.
Collins
,
J. A.
,
1993
,
Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention
,
John Wiley & Sons
, New York.
5.
Wohlgemuth
,
J. H.
,
Cunningham
,
D. W.
,
Nguyen
,
A. M.
, and
Miller
,
J.
,
2005
, “
Long Term Reliability of PV Modules
,”
20th European Photovoltaic Solar Energy Conference
, Barcelona, Spain, June 6–10, pp.
1942
1946
.
6.
Wohlgemuth
,
J.
, and
Cunningham
,
D.
,
2008
, “
Using Accelerated Tests and Field Data to Predict Module Reliability and Lifetime
,”
23rd European Photovoltaic Solar Energy Conference and Exhibition
, Valencia, Spain, September 1–5, pp.
2663
2669
.
7.
Wiese
,
S.
,
Meier
,
R.
,
Kraemer
,
F.
, and
Bagdahn
,
J.
,
2009
, “
Constitutive Behaviour of Copper Ribbons Used in Solar Cell Assembly Processes
,”
10th IEEE International Conference on Thermal, Mechanical, and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems
(
EuroSimE 2009
), Delft, Netherlands, April 26–29, pp.
1
8
.10.1109/ESIME.2009.4938464
8.
Wiese
,
S.
,
Meier
,
R.
, and
Kraemer
,
F.
,
2010
, “
Mechanical Behaviour and Fatigue of Copper Ribbons Used as Solar Cell Interconnectors
,”
11th IEEE International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems
(
EuroSimE
), Bordeaux, France, April 26–28, pp.
1
5
.10.1109/ESIME.2010.5464551
9.
ASTM Standard E1171-09,
2009
, “
Standard Test Methods for Photovoltaic Modules in Cyclic Temperature and Humidity Environments
,”
ASTM International
, West Conshohocken, PA, http://www.astm.org
10.
Wohlgemuth
,
J. H.
, and
Kurtz
,
S.
,
2011
, “
Using Accelerated Testing to Predict Module Reliability
,”
37th IEEE Photovoltaic Specialists Conference
(
PVSC
), Seattle, WA, June 19–24, pp.
003601
–003605.10.1109/PVSC.2011.6185927
11.
Chen
,
C.-H.
,
Lin
,
F.-M.
,
Hu
,
H.-T.
, and
Yeh
,
F.-Y.
, “
Residual Stress and Bow Analysis for Silicon Solar Cell Induced by Soldering
,” http://140.116.36.16/paper/c38.pdf
.
12.
Wiese
,
S.
,
Kraemer
,
F.
,
Betzl
,
N.
, and
Wald
,
D.
,
2010
, “
The Packaging Technologies for Photovoltaic Modules—Technological Challenges and Mechanical Integrity
,”
3rd Electronics System-Integration Technology Conference
(
ESTC
), Berlin, Germany, September 13–16, pp.
1
6
.10.1109/ESTC.2010.5642824
13.
Eitner
,
U.
,
Altermatt
,
P. P.
,
Kontges
,
M.
,
Meyer
,
R.
, and
Brendel
,
R.
,
2008
, “
A Modeling Approach to the Optimization of Interconnects for Back Contact Cells by Thermomechanical Simulations of Photovoltaic Modules
,”
23rd European Photovoltaic Solar Energy Conference
(
EU PVSEC
), Valencia, Spain, September 1–5, pp.
2815
2817
.10.4229/23rdEUPVSEC2008-4AV.3.8
14.
Dietrich
,
S.
,
Pander
,
M.
,
Sander
,
M.
,
Schulze
,
S. H.
, and
Ebert
,
M.
,
2010
, “
Mechanical and Thermomechanical Assessment of Encapsulated Solar Cells by Finite-Element-Simulation
,” Reliability of Photovoltaic Cells, Modules, Components, and Systems III (Proc.
SPIE 7773
), San Diego, CA, August 3–5.10.1117/12.860661
15.
Gonzalez
,
M.
,
Govaerts
,
J.
,
Labie
,
R.
,
De
Wolf
, I
.
, and
Baert
,
K.
,
2011
, “
Thermo-Mechanical Challenges of Advanced Solar Cell Modules
,”
12th IEEE International Conference on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems
(
EuroSimE
), Linz, Austria, April 18–20, pp.
1/7
7/7
.10.1109/ESIME.2011.5765822
16.
Eitner
,
U.
,
Kajari-Schroder
,
S.
,
Marc
,
K.
, and
Altenbach
,
H.
,
2011
,
Thermal Stress and Strain of Solar Cells in Photovoltaic Modules, Shell-Like Structures
,
Springer
,
Berlin/Heidelberg
.
17.
Eitner
,
U.
,
Kontges
,
M.
, and
Brendel
,
R.
,
2009
, “
Measuring Thermomechanical Displacements of Solar Cells in Laminates Using Digital Image Correlation
,”
34th IEEE Photovoltaic Specialists Conference
(
PVSC
), Philadelphia, PA, June 7–12, pp.
001280
–001284.10.1109/PVSC.2009.5411248
18.
Eitner
,
U.
,
Kajari-Schroder
,
S.
,
Kontges
,
M.
, and
Brendel
,
R.
,
2010
, “
Non-Linear Mechanical Properties of Ethylene-Vinyl Acetate (EVA) and Its Relevance to Thermomechanics of Photovoltaic Modules
,”
25th European Photovoltaic Solar Energy Conference
(
EU PVSEC
), Valencia, Spain, September 6–10, pp.
4366
4368
.10.4229/25thEUPVSEC2010-4AV.3.115
19.
Siddiqui
,
M. U.
, and
Arif
,
A. F. M.
,
2012
, “
Effect of Changing Atmospheric and Operating Conditions on the Thermal Stresses in PV Modules
,”
ASME 11th Biennial Conference on Engineering Systems Design and Analysis
(ESDA2012), Nantes, France, July 2–4,
ASME
Paper No. ESDA2012-82740.10.1115/ESDA2012-82740
20.
Siddiqui
,
M. U.
,
2011
, “
Multi-Physics Modeling of Photovoltaic Modules and Arrays With Auxiliary Thermal Collectors
,” M.S. thesis, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
21.
Pander
,
M.
,
2010
, “
Mechanische Untersuchungen an Solarzellen in PV-Modulen Mittels Finite-Elemente-Modellierung
,” Hochschule für Technik, Wirtschaft und Kultur Leipzig (FH), Leipzig, Germany.
22.
Hopcroft
,
M. A.
,
Nix
,
W. D.
, and
Kenny
,
T. W.
,
2010
, “
What is the Young's Modulus of Silicon?
,”
J. Microelectromech. Syst.
,
19
(
2
), pp.
229
238
.10.1109/JMEMS.2009.2039697
23.
Lyon
,
K. G.
,
Salinger
,
G. L.
,
Swenson
,
C. A.
, and
White
,
G. K.
,
1977
, “
Linear Thermal Expansion Measurements on Silicon From 6 to 340 K
,”
J. Appl. Phys.
,
48
(
3
), pp.
865
–868.10.1063/1.323747
24.
Roberts
,
R. B.
,
1981
, “
Thermal Expansion Reference Data: Silicon 300-850 K
,”
J. Phys. D
,
14
(
10
), pp.
L163
L166
.10.1088/0022-3727/14/10/003
25.
Tschoegl
,
N. W.
,
1989
,
The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction
,
Springer-Verlag
,
Berlin/Heidelberg
.
26.
Imaoka
,
S.
,
2008
, “
Viscoelasticity
,” STI0807B, http://www.ansys.net
27.
Ansys Inc.,
2010
, “
ANSYS Mechanical APDL Structural Analysis Guide
,” Canonsburg, PA.
28.
White
,
G. K.
, and
Minges
,
M. L.
,
1997
, “
Thermophysical Properties of Some Key Solids: An Update
,”
Int. J. Thermophys.
,
18
(
5
), pp.
1269
1327
.10.1007/BF02575261
29.
Stephens
,
R. I.
, and
Fuchs
,
H. O.
,
2001
,
Metal Fatigue in Engineering
,
Book News, Inc.
,
Portland
, OR.
30.
Bivens
,
G.
,
1990
, “
Predicting Time-to-Failure Using Finite Element Analysis
,”
Reliability and Maintainability Symposium
, Los Angeles, CA, January 23–25, pp.
319
322
.10.1109/ARMS.1990.67976
31.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2006
,
Solar Engineering of Thermal Processes
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
You do not currently have access to this content.