Thermal efficiencies of the solar field of two different parabolic trough concentrator (PTC) systems are evaluated for a variety of operating conditions and geographical locations, using a detailed 3D heat transfer model. Results calculated at specific design points are compared to yearly average efficiencies determined using measured direct normal solar irradiance (DNI) data as well as an empirical correlation for DNI. It is shown that the most common choices of operating conditions at which solar field performance is evaluated, such as the equinox or the summer solstice, are inadequate for predicting the yearly average efficiency of the solar field. For a specific system and location, the different design point efficiencies vary significantly and differ by as much as 11.5% from the actual yearly average values. An alternative simple method is presented of determining a representative operating condition for solar fields through weighted averages of the incident solar radiation. For all tested PTC systems and locations, the efficiency of the solar field at the representative operating condition lies within 0.3% of the yearly average efficiency. Thus, with this procedure, it is possible to accurately predict year-round performance of PTC systems using a single design point, while saving computational effort. The importance of the design point is illustrated by an optimization study of the absorber tube diameter, where different choices of operating conditions result in different predicted optimum absorber diameters.

References

References
1.
Bendt
,
P.
,
Rabl
,
A.
,
Gaul
,
H. W.
, and
Reed
,
K. A.
,
1979
, “
Optical Analysis and Optimization of Line Focus Solar Collectors
,” Solar Energy Research Institute, Golden, CO, Technical Report SERI/TR-34-092.
2.
Pitz-Paal
,
R.
,
Botero
,
N. B.
, and
Steinfeld
,
A.
,
2011
, “
Heliostat Field Layout Optimization for High-Temperature Solar Thermochemical Processing
,”
Solar Energy
,
85
(
2
), pp.
334
343
.10.1016/j.solener.2010.11.018
3.
Amsbeck
,
L.
,
Buck
,
R.
,
Heller
,
P.
,
Jedamski
,
J.
, and
Uhlig
,
R.
,
2008
, “
Development of a Tube Receiver for a Solar-Hybrid Microturbine System
,”
Proceedings of 14th SolarPACES Conference
, Las Vegas, NV, March 4–7.
4.
Segal
,
A.
, and
Epstein
,
M.
,
2003
, “
Optimized Working Temperatures of a Solar Central Receiver
,”
Sol. Energy
,
75
(
6
), pp.
503
510
.10.1016/j.solener.2003.08.036
5.
Montes
,
M.
,
Abánades
,
A.
, and
Martínez-Val
,
J.
,
2009
, “
Performance of a Direct Steam Generation Solar Thermal Power Plant for Electricity Production as a Function of the Solar Multiple
,”
Sol. Energy
,
83
(
5
), pp.
679
689
.10.1016/j.solener.2008.10.015
6.
Montes
,
M.
,
Abánades
,
A.
,
Martínez-Val
,
J.
, and
Valdés
,
M.
,
2009
, “
Solar Multiple Optimization for a Solar-Only Thermal Power Plant, Using Oil as Heat Transfer Fluid in the Parabolic Trough Collectors
,”
Sol. Energy
,
83
(
12
), pp.
2165
2176
.10.1016/j.solener.2009.08.010
7.
Montes
,
M.
,
Abánades
,
A.
, and
Martínez-Val
,
J.
,
2010
, “
Thermofluidynamic Model and Comparative Analysis of Parabolic Trough Collectors Using Oil, Water/Steam, or Molten Salt as Heat Transfer Fluids
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p.
021001
.10.1115/1.4001399
8.
Kalogirou
,
S. A.
,
Lloyd
,
S.
,
Ward
,
J.
, and
Eleftheriou
,
P.
,
1994
, “
Design and Performance Characteristics of a Parabolic-Trough Solar-Collector System
,”
Appl. Energy
,
47
(
4
), pp.
341
354
.10.1016/0306-2619(94)90041-8
9.
Romero
,
M.
,
Buck
,
R.
, and
Pacheco
,
J. E.
,
2002
, “
An Update on Solar Central Receiver Systems, Projects, and Technologies
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
98
108
.10.1115/1.1467921
10.
Larraín
,
T.
,
Escobar
,
R.
, and
Vergara
,
J.
,
2010
, “
Performance Model to Assist Solar Thermal Power Plant Siting in Northern Chile Based on Backup Fuel Consumption
,”
Renewable Energy
,
35
(
8
), pp.
1632
1643
.10.1016/j.renene.2010.01.008
11.
Manzolini
,
G.
,
Bellarmino
,
M.
,
Macchi
,
E.
, and
Silva
,
P.
,
2011
, “
Solar Thermodynamic Plants for Cogenerative Industrial Applications in Southern Europe
,”
Renewable Energy
,
36
(
1
), pp.
235
243
.10.1016/j.renene.2010.06.026
12.
Tyagi
,
S.
,
Wang
,
S.
,
Singhal
,
M.
,
Kaushik
,
S.
, and
Park
,
S.
,
2007
, “
Exergy Analysis and Parametric Study of Concentrating Type Solar Collectors
,”
Int. J. Therm. Sci.
,
46
(
12
), pp.
1304
1310
.10.1016/j.ijthermalsci.2006.11.010
13.
Kalogirou
,
S.
,
Lloyd
,
S.
, and
Ward
,
J.
,
1997
, “
Modelling, Optimisation, and Performance Evaluation of a Parabolic Trough Solar Collector Steam Generation System
,”
Sol. Energy
,
60
(
1
), pp.
49
59
.10.1016/S0038-092X(96)00131-4
14.
Rolim
,
M. M.
,
Fraidenraich
,
N.
, and
Tiba
,
C.
,
2009
, “
Analytic Modeling of a Solar Power Plant With Parabolic Linear Collectors
,”
Sol. Energy
,
83
(
1
), pp.
126
133
.10.1016/j.solener.2008.07.018
15.
Wirz
,
M.
,
Roesle
,
M.
, and
Steinfeld
,
A.
,
2012
, “
Three-Dimensional Optical and Thermal Numerical Model of Solar Tubular Receivers in Parabolic Trough Concentrators
,”
ASME J. Sol. Energy Eng.
,
134
(
4
), p.
041012
.10.1115/1.4007494
16.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2006
,
Fundamentals of Heat and Mass Transfer,
6th ed.
,
John Wiley & Sons
,
New York
.
17.
Serghides
,
T. K.
,
1984
, “
Estimate Friction Factor Accurately
,”
Chem. Eng.
,
91
(
5
), pp.
63
64
.
18.
Patnode
,
A. M.
,
2006
, “
Simulation and Performance Evaluation of Parabolic Trough Solar Power Plants
,” M.S. thesis, University of Wisconsin-Madison, Madison, WI.
19.
Manzolini
,
G.
,
Giostri
,
A.
,
Saccilotto
,
C.
,
Silva
,
P.
, and
Macchi
,
E.
,
2011
, “
Development of an Innovative Code for the Design of Thermodynamic Solar Power Plants Part A: Code Description and Test Case
,”
Renewable Energy
,
36
(
7
), pp.
1993
2003
.10.1016/j.renene.2010.12.027
20.
Coastal Chemical Company, LLC, 2012, “HITEC® Heat Transfer Salt,” http://www.coal2nuclear.com/MSR%20-%20HITEC%20Heat%20Transfer%20Salt.pdf
21.
Esposito
,
S.
,
Antonaia
,
A.
,
Addonizio
,
M. L.
, and
Aprea
,
S.
,
2009
, “
Fabrication and Optimisation of Highly Efficient Cermet-Based Spectrally Selective Coatings for High Operating Temperature
,”
Thin Solid Films
,
517
(
21
), pp.
6000
6006
.10.1016/j.tsf.2009.03.191
22.
Archimede Solar Energy, 2011, “
ASE Receiver Tube Datasheet
,” accessed October 2012, http://www.archimedesolarenergy.com/hems11_en.pdf
23.
Riffelmann
,
K. J.
,
Neumann
,
A.
, and
Ulmer
,
S.
,
2006
, “
Performance Enhancement of Parabolic Trough Collectors by Solar Flux Measurement in the Focal Region
,”
Sol. Energy
,
80
(
10
), pp.
1303
1313
.10.1016/j.solener.2005.09.001
24.
Schiricke
,
B.
,
Pitz-Paal
,
R.
,
Lüpfert
,
E.
,
Pottler
,
K.
,
Pfänder
,
M.
,
Riffelmann
,
K. J.
, and
Neumann
,
A.
,
2009
, “
Experimental Verification of Optical Modeling of Parabolic Trough Collectors by Flux Measurement
,”
ASME J. Sol. Energy Eng.
,
131
(
1
), p.
011004
.10.1115/1.3027507
25.
Maccari
,
A.
,
2006
, “
ENEA Activities on CSP Technologies
,”
Proceedings of Parabolic Trough Technology Workshop
, Incline Village, NV, February 14–16.
26.
Dudley
,
V. E.
,
Kolb
,
G. J.
,
Mahoney
,
A. R.
,
Mancini
,
T. R.
,
Matthews
,
C. W.
,
Sloan
,
M.
, and
Kearney
,
D.
,
1994
, “
Test Results: SEGS LS-2 Solar Collector
,” Sandia National Laboratories, Albuquerque, NM, Technical Report SAND94-1884.
27.
Fernández-García
,
A.
,
Zarza
,
E.
,
Valenzuela
,
L.
, and
Pérez
,
M.
,
2010
, “
Parabolic-Trough Solar Collectors and Their Applications
,”
Renewable Sustainable Energy Rev.
,
14
(
7
), pp.
1695
1721
.10.1016/j.rser.2010.03.012
28.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
1991
,
Solar Engineering of Thermal Processes
,
2nd ed.
,
John Wiley and Sons, Inc.
,
NY
.
29.
Hottel
,
H. C.
,
1976
, “
A Simple Model for Estimating the Transmittance of Direct Solar Radiation Through Clear Atmospheres
,”
Sol. Energy
,
18
(
2
), pp.
129
134
.10.1016/0038-092X(76)90045-1
30.
ASHRAE
,
2001
, “
International Weather for Energy Calculations (IWEC Weather Files) Users Manual and CD-ROM
,” Atlanta, GA.
31.
Wilcox
,
S.
, and
Marion
,
W.
,
2008
, “
Users Manual for TMY3 Data Sets
,” National Renewable Energy Laboratory, Golden, CO, Technical Report NREL/TP-581-43156.
32.
Solutia Inc.
,
2008
, “
Therminol VP-1—Vapor Phase/Liquid Phase Heat Transfer Fluid
,” St. Louis, MO, Technical Bulletin 7239115C.
33.
Benz
,
N.
,
Graf
,
W.
,
Hacker
,
Z.
,
Hildebrandt
,
C.
,
Möllenhoff
,
M.
,
Schulte-Fischedick
,
J.
, and
Silmy
,
K.
,
2008
, “
Advances in Receiver Technology for Parabolic Troughs
,”
Proceedings of 14th SolarPACES Conference
, Las Vegas, NV, March 4–7.
You do not currently have access to this content.