This paper investigates the deterioration in the performance of thermosiphon flat plate solar water heaters (SWH) with water side scaling. The study presents the analytical and experimental variation of mass flow rate of water with scale thickness in risers of conventional solar flat plate water heater for different electrical power inputs (covering the full range of solar incident radiation up to 1 kW/m2). This information is extended further to determine the drop in efficiency characteristics represented by the Hottel–Whillier–Bliss (H–W–B) constants for full–fledged SWH. To simulate scaling in risers in the absorber plate of a SWH, an artificial method of coating has been used to create single pipe riser of different uniform scale thicknesses. Four such risers are created with scale thickness of 0 mm, 0.7 mm, 1.7 mm, 2.7 mm, and 3.7 mm. The observed drop in mass flow rate through the range of risers between 0 mm and 3.7 mm scale thickness is 58.5% for the thermal input power (supplied through electric heating) of 129.5 W (corresponding to a solar incident radiation of 980 W/m2). In comparison, the analytical results show a corresponding drop of 70.12%. A comparison of the coated riser with a cut tube of an actually scaled riser indicates excellent matching of thermal conductivity. The divergence between experimental and analytical mass flow rate in the case of a riser of the highest scale thickness, viz., 3.7 mm, is the lowest because of increased pressure gain in the flow region together with higher temperature than predicted by the general equation. The experimental data of various energy parameters from the single tube scaled riser studies are matching with analytical values for the different input electrical power levels (corresponding to the different solar radiation levels). As identical conditions are used in the experimental analysis, the results for risers of various scale thicknesses and electrical power inputs are applicable to corresponding full–fledged SWH.

References

References
1.
Renewables
,
2013
Global Status Report, pp.
44
47
.
2.
Ministry of New and Renewable Energy of India Annual Report 2012-13, pp.
49
50
.
3.
Michaelides
,
M.
, and
Eleftheriou
,
P. C.
,
2011
, “
An Experimental Investigation of the Performance Boundaries of a Solar Water
,”
Exp. Therm. Fluid Sci.
,
35
, pp.
1002
1009
.10.1016/j.expthermflusci.2011.02.001
4.
Alain
,
M.
, and
François
,
L.
,
2012
, “
Field Study of Solar Domestic Water Heaters in Quebec
,”
Energy Proc.
,
30
, pp.
1331
1338
.10.1016/j.egypro.2012.11.146
5.
Ilhan
,
C.
,
2012
, “
Energy and Energy Analyses of a Temperature Controlled Solar Water Heater
,”
Energy Build.
,
47
, pp.
630
635
.10.1016/j.enbuild.2011.12.040
6.
Abdul Jabbar
,
N. K.
,
Kadhim
,
H. S.
, and
Mahmoud
,
S. M.
,
2013
, “
A Storage Domestic Solar Hot Water System With a Back Layer of Phase Change Material
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
174
181
.10.1016/j.expthermflusci.2012.05.017
7.
Zeghib
,
I.
, and
Chaker
,
A.
,
2011
, “
Simulation of a Solar Domestic Water Heating System
,”
Energy Proc.
,
6
, pp.
292
301
.10.1016/j.egypro.2011.05.033
8.
Haddad
,
F.
,
Chikouche
,
A.
, and
Laour
,
M.
,
2011
, “
Simulation of the Opti-Physical Parameters of Selectives Surfaces of Absorber by the FDTD Method
,”
Appl. Sol. Energy Proc.
,
6
, pp.
413
421
.10.1016/j.egypro.2011.05.048
9.
Kundu
,
B.
,
2010
, “
Analytic Method for Thermal Performance and Optimization of an Absorber Plate Fin Having Variable Thermal Conductivity and Overall Loss Coefficient
,”
Appl. Energy
,
87
(
7
), pp.
2243
2255
.10.1016/j.apenergy.2010.01.008
10.
Patricia
,
S.
,
Lorraine
,
F. F.
, and
Jane
,
H. D.
,
2006
, “
Calcium Carbonate Formation on Cross-Linked Polyethylene (PEX) and Polypropylene Random Copolymer (PP-r)
,”
ASME J. Sol. Energy
,
128
(
2
), pp.
251
254
.10.1115/1.2189863
11.
Zhen
,
W.
,
Lorraine
,
F. F.
, and
Jane
,
H. D.
,
2009
, “
Scale Formation on Polypropylene and Copper Tubes in Mildly Supersaturated Tap Water
,”
Sol. Energy
,
83
(
5
), pp.
636
645
.10.1016/j.solener.2008.10.012
12.
Yana
,
W.
,
Jane
,
D.
, and
Lorraine
,
F.
,
2005
, “
Scaling in Polymer Tubes and Interpretation for Use in Solar Water Heating Systems
,”
ASME J. Sol. Energy
,
127
(
1
), pp.
3
14
.10.1115/1.1823492
13.
Derek
,
B.
, and
Gary
,
V.
,
2001
, “
Designing Solar Hot Water Systems for Scaling Environments
,”
ASME J. Sol. Energy
,
123
(
1
), pp.
43
47
.10.1115/1.1350564
14.
Matt
,
R.
,
Jane
,
H. D.
,
Lorraine
,
F. F.
, and
Susan
,
C. M.
,
2010
, “
Shear Induced Removal of Calcium Carbonate Scale From Polypropylene and Copper Tubes
,”
ASME J. Sol. Energy
,
132
(
1
), p.
011013
.10.1115/1.4000573
15.
Arunachala
,
U. C.
,
Siddhartha
,
B. M.
, and
Sreepathi
,
L. K.
,
2010
, “
Scaling Effect of Direct Solar Hot Water Systems on Energy Efficiency
,”
ASME J. Sol. Energy
,
132
(
4
), p.
041012
.10.1115/1.4002512
16.
Zerrouki
,
A.
,
Boumedien
,
A.
, and
Bouhadef
,
K.
,
2002
, “
The Natural Circulation Solar Water Heater Model With Linear Temperature Distribution
,”
Renewable Energy
,
26
(
4
), pp.
549
559
.10.1016/S0960-1481(01)00146-X
17.
Siddhartha
,
B. M.
,
Sreepathi
,
L. K.
, and
Arunachala
,
U. C.
,
2009
, “
Effect of Scaling on Energy Efficiency of Solar Flat Plate Water Heaters
,”
J. Sol. Energy Soc. India (SESI)
,
19
(
1 & 2
), pp.
1
17
.
18.
Kothandaraman
,
C. P.
, and
Subramanyan
,
S.
,
2006
,
Heat and Mass Transfer Data Book
,
5th ed.
,
New Age International Publishers
,
India
.
19.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
1991
,
Solar Engineering of Thermal Processes
,
2nd ed.
,
Wiley Interscience
,
New York
.
20.
Boehm Robert
,
F.
,
1987
,
Design Analysis of Thermal Systems
,
John Wiley & Sons
,
New York
.
21.
Klein
,
S. A.
,
1975
, “
Calculation of Flat Plate Collector Loss Coefficients
,”
Sol. Energy
,
17
, pp.
79
80
.10.1016/0038-092X(75)90020-1
You do not currently have access to this content.