In central receiver systems, the ideal reflective shape of a heliostat is a section of a paraboloid that adapting with the sun's angle and the mirror's location in the field. Deviation from this shape leads to optical astigmatism that increases the spot size on the receiver aperture, which eventually causes higher energy loss and lower conversion efficiency. However, it is challenging to implement the ideal shape by conventional design and manufacturing methods. In this paper, a novel compliant heliostat design methodology is proposed. By tailoring the two dimensional stiffness profile of a square plate, the paraboloid shape can be formed by a simple, low-cost mechanism with concentrated moment loads on the corners of the plate. The static optimized shapes, which can be easily realized by adjusting the loads according to the locations during heliostat assembly on the site, are suggested as approximations of the ideal shapes. Analytical models were developed in detail for the methodology. Numerical analysis consists of finite element analysis, optical ray tracing, and optimization. The numerical results illustrate that the performance of the shape optimized heliostats using tailored stiffness approach is close to the ideal shapes, providing substantial improvement in optical efficiency and reduction in spot size comparing to the flat mirrors. Furthermore, experiments on a prototype heliostat mechanism with a honeycomb-sandwich panel were conducted to validate the effectiveness of this low-cost shaping approach.

References

References
1.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,
30
(
3
), pp.
231
295
.10.1016/j.pecs.2004.02.001
2.
Slocum
,
A. H.
,
Codd
,
D. S.
,
Buongiorno
,
J.
, Forsberg, C., McKrell, T., Nave, J., Papanicolas, C. N., Ghobeity, A., Noone, C. J., Passerini, S., Rojas, F., and Mitsos, A.,
2011
, “
Concentrated Solar Power on Demand
,”
Solar Energy
,
85
(
7
), pp.
1519
1529
.10.1016/j.solener.2011.04.010
3.
Wang
,
Z.
,
2010
. “
Prospectives for China's Solar Thermal Power Technology Development
,”
Energy
,
35
(
11
), pp.
4417
4420
.10.1016/j.energy.2009.04.004
4.
Noone
,
C. J.
,
Torrilhon
,
M.
, and
Mitsos
,
A.
,
2012
, “
Heliostat Field Optimization: A New Computationally Efficient Model and Biomimetic Layout
,”
Solar Energy
,
86
(
2
), pp.
792
803
.10.1016/j.solener.2011.12.007
5.
Chen
,
Y. T.
,
Chong
,
K. K.
,
Bligh
,
T. P.
,
Chen
,
L. C.
,
Yunus
,
J.
,
Kannan
,
K. S.
, Lim, B. H., Lim, C. S., Alias, M. A., Bidin, N., Aliman, O., Salehan, S., Shk. Abd. Rezan, S.A.H., Tam, C. M., and Tan, K. K.,
2001
, “
Non-Imaging Focusing Heliostat
,”
Solar Energy
,
71
(
3
), pp.
155
164
.10.1016/S0038-092X(01)00041-X
6.
Chong
,
K. K.
,
Lim
,
C. Y.
, and
Hiew
,
C. W.
,
2011
, “
Cost-Effective Solar Furnace System Using Fixed Geometry Non-Imaging Focusing Heliostat and Secondary Parabolic Concentrator
,”
Renewable Energy
,
36
(
5
), pp.
1595
1602
.10.1016/j.renene.2010.11.010
7.
Bonanos
,
A. M.
,
Noone
,
C. J.
, and
Mitsos
,
A.
,
2012
, “
Reduction in Spot Size Via Off-Axis Static and Dynamic Heliostat Canting
,”
ASME 6th International Conference on Energy Sustainability & 10th Fuel Cell Science, Engineering and Technology Conference
,
San Diego, CA
, July 23–26,
ASME
Paper No. ES2012-91425.10.1115/ES2012-91425
8.
Igel
,
E.
, and
Hughes
,
R.
,
1979
, “
Optical Analysis of Solar Facility Heliostats
,”
Solar Energy
,
22
(
3
), pp.
283
295
.10.1016/0038-092X(79)90143-9
9.
Kolb
,
G. J.
,
Jones
,
S. A.
,
Donnelly
,
M. W.
, Gorman, D., Thomas, R., Davenport, R., and Lumia, R.,
2007
, “
Heliostat Cost Reduction Study
,” Sandia National Laborabories, Albuquerque, NM, Report No. SAND2007-3293.
10.
Mancini
,
T.
,
2000
, “
Catalog of Solar Heliostats
,” Solar PACES Technical Report No. III-1/00.
11.
Solúcar, Inabensa, Fichtner, Ciemat, DLR
,
2006
, “
Final Technical Progress Report: 10 MW Solar Thermal Power Plant for Southern Spain
,” http://ec.europa.eu/energy/res/sectors/doc/csp/ps10_final_report.pdf
12.
Radosevich
,
L. G.
, and
Shinrood
,
A. C.
,
1989
, “
The Power Production Operation of Solar One, the 10 MWe Solar Thermal Central Receiver Pilot Plant
,”
ASME J. Sol. Energy Eng.
,
111
(
2
), pp.
144
151
.10.1115/1.3268300
13.
Buck
,
R.
, and
Teufel
,
E.
,
2009
, “
Comparison and Optimization of Heliostat Canting Methods
,”
ASME J. Sol. Energy
,
131
(
1
), p.
011001
.10.1115/1.3027500
14.
Schell
,
S.
,
2011
, “
Design and Evaluation of Esolar's Heliostat Fields
,”
Solar Energy
,
85
(
4
), pp.
614
619
.10.1016/j.solener.2010.01.008
15.
Vogel
,
W.
, and
Kalb
,
H.
,
2010
,
Large-Scale Solar Thermal Power
,
Wiley-VCH
,
Weinheim
, Germany.
16.
Scheffler
,
W.
,
2006
, “
Introduction to the Revolutionary Design of Scheffler Reflectors
,” 2006 Solar Cookers and Food Processing International Conference, Granada, Spain, July 12–16.
17.
Kunz
,
G.
, and
Lorenz
,
P.
,
2011
, “
Reflector, Receiver Arrangement, and Sensor for Thermal Solar Collectors
,” U.S. Patent US 20120312959 A1.
18.
AM-BRAIN
,
2012
, “K125's Performance,” http://am-brain.de/docs/k125.pdf
19.
Li
,
L.
,
Kecskemethy
,
A.
,
Arif
,
A. F. M.
, and
Dubowsky
,
S.
,
2011
, “
Optimized Bands: A New Design Concept for Concentrating Solar Parabolic Mirrors
,”
ASME J. Sol. Energy
,
133
(
3
), p.
031003
.10.1115/1.4004351
20.
Li
,
L.
,
Dubowsky
,
S.
,
2011
, “
A New Design Approach for Solar Concentrating Parabolic Dish Based on Optimized Flexible Petals
,”
J. Mech. Mach. Theor.
,
46
(
10
), pp.
1536
1548
.10.1016/j.mechmachtheory.2011.04.012
21.
Winston
,
R.
,
Minano
,
J. C.
,
Benitez
,
P. G.
,
Shatz
,
N.
, and
Bortz
,
J. C.
,
2005
,
Nonimaging Optics
,
Elsevier Academic Press
,
Oxford
, UK.
22.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
23.
Zang
,
C.
,
Wang
,
Z.
,
Wang
,
Y.
,
Liu
,
X.
, and
Zhang
,
X.
,
2010
, “
Structural Design and Analysis of the Toroidal Heliostat
,”
ASME J. Sol. Energy
,
132
(
4
), p.
041007
.10.1115/1.4002347
24.
Peterka
,
J. A.
, and
Derickson
,
R. G.
,
1992
, “
Wind Load Design Methods for Ground Based Heliostats and Parabolic Dish Collectors
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND-92-7009.
25.
Buie
,
D.
,
Monger
,
A. G.
, and
Dey
,
C. J.
,
2003
, “
Sunshape Distributions for Terrestrial Solar Simulations
,”
Solar Energy
,
74
(
2
), pp.
113
122
.10.1016/S0038-092X(03)00125-7
26.
Neumann
,
A.
,
Witzke
,
A.
,
Jones
,
S. A.
, and
Schmitt
,
G.
,
2002
, “
Representative Terrestrial Solar Brightness Profiles
,”
ASME J. Sol. Energy
,
124
(
2
), pp.
198
204
.10.1115/1.1464880
27.
Łukasiewicz
,
S. A.
,
1976
, “
Introduction of Concentrated Loads in Plates and Shells
,”
Prog. Aerospace Sci.
,
17
(
2
), pp.
109
146
.10.1016/0376-0421(76)90006-3
You do not currently have access to this content.